首页 | 本学科首页   官方微博 | 高级检索  
     

基于密度分布特征及机器学习诊断COVID-19相关性肺炎
引用本文:韩冬,于勇,贺太平,段海峰,贾永军,张喜荣,郭佑民,于楠. 基于密度分布特征及机器学习诊断COVID-19相关性肺炎[J]. 中国医学物理学杂志, 2021, 0(3): 387-391. DOI: DOI:10.3969/j.issn.1005-202X.2021.03.022
作者姓名:韩冬  于勇  贺太平  段海峰  贾永军  张喜荣  郭佑民  于楠
作者单位:1.陕西中医药大学附属医院医学影像科, 陕西 咸阳 712000;2.陕西中医药大学医学技术学院, 陕西 咸阳 712000; 3.西安交通大学第一附属医院医学影像科, 陕西 西安 710061
基金项目:陕西中医药大学学科创新团队建设项目(2019-QN09,2019-YS04)。
摘    要:目的:基于密度分布特征及机器学习诊断新型冠状病毒(COVID-19)相关性肺炎。方法:回顾性收集经荧光逆转录聚合酶链反应检测确诊COVID-19的患者42例(COVID-19组),社区获得性肺炎43例(对照组)。共获得211份胸部CT图像,以6:4比例分层抽样为训练集(126份)及验证集(85份)。采用一种CAD软件中的肺炎模块获得肺炎不同密度区间所占全肺体积的百分比(P/L%)。密度分布特征降维后采用支持向量机(SVM)建模,并评价4种核函数的SVM模型的诊断效能。结果:两组患者的年龄、性别及出现胸膜腔积液的构成比差异均无统计学意义(P>0.05)。肺炎密度分布特征降维后获得32个特征。基于该32个特征建立的4种核函数SVM模型中,多项式SVM模型在验证集的效能最高,受试者特征曲线(ROC)的曲线下面积为0.897(95%可信区间0.828~0.966),P<0.001。准确性为0.906(95%可信区间0.823~0.959),敏感性为0.906,特异性为0.906。结论:基于密度分布特征及机器学习诊断COVID-19相关性肺炎有较高的效能,有助于快速筛选COVID-19患者。

关 键 词:新型冠状病毒  肺炎  密度分布特征  机器学习

Diagnosis of COVID-19 associated pneumonia based on density distribution features and machine learning
HAN Dong,YU Yong,HE Taiping,DUAN Haifeng,JIAYongjun,ZHANG Xirong,GUO Youmin,YU Nan. Diagnosis of COVID-19 associated pneumonia based on density distribution features and machine learning[J]. Chinese Journal of Medical Physics, 2021, 0(3): 387-391. DOI: DOI:10.3969/j.issn.1005-202X.2021.03.022
Authors:HAN Dong  YU Yong  HE Taiping  DUAN Haifeng  JIAYongjun  ZHANG Xirong  GUO Youmin  YU Nan
Affiliation:1. Department of Medical Imaging, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China 2. School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang 712000, China 3. Department of Medical Imaging, the First Affiliated Hospital of Xian Jiaotong University, Xian 710061, China
Abstract:Objective To diagnose corona virus disease 2019(COVID-19)associated pneumonia based on density distribution features and machine learning.Methods The clinical information of 42 patients with COVID-19 confirmed by RT-PCR(COVID-19 group)and 43 patients with community-acquired pneumonia(control group)were retrospectively collected.A total of 211 chest CT images were obtained,and according to stratified sampling based on a proportion of 6 to 4,the chest images were divided into training set(126)and validation set(85).The percentages of different density intervals of pneumonia in the total lung volume(P/L%)were obtained using a pneumonia module in CAD software.Support vector machine(SVM)was used for modeling after the dimensionality reduction of density distribution features,and the diagnostic efficiency of SVM models with 4 different kernel functions was evaluated.Results There was no significant difference in age,gender and constituent ratio of pleural effusion between two groups(P>0.05).A total of 32 features were obtained after the dimensionality reduction of pneumonia density distribution features.Among SVM models with 4 different kernel functions based on these 32 features,polynomial SVM model has the highest efficiency in validation set,and the area under receiver operating characteristic curve was 0.897(95%confidence interval 0.828-0.966)(P<0.001).The accuracy,sensitivity and specificity of polynomial SVM model were 0.906(95%confidence interval:0.823-0.959),0.906 and 0.906.Conclusion The diagnosis of COVID-19 associated pneumonia based on the density distribution features and machine learning has a high efficiency,which is helpful for the rapid screening of COVID-19 patients.
Keywords:novel corona virus  pneumonia  density distribution features  machine learning
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国医学物理学杂志》浏览原始摘要信息
点击此处可从《中国医学物理学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号