首页 | 本学科首页   官方微博 | 高级检索  
     

基于U-Net的T细胞斑点检测方法研究
引用本文:裴潇倜,吕琳,黄鹏杰,陈兆学,林勇. 基于U-Net的T细胞斑点检测方法研究[J]. 中国医学物理学杂志, 2021, 0(4): 518-522. DOI: DOI:10.3969/j.issn.1005-202X.2021.04.022
作者姓名:裴潇倜  吕琳  黄鹏杰  陈兆学  林勇
作者单位:上海理工大学医疗器械与食品学院, 上海 200093
摘    要:
针对传统图像分割方法抗噪性弱、容易漏检的问题,提出基于U-Net模型的T细胞斑点分割算法。通过中值滤波器平滑消除噪声,灰度化处理降低背景干扰,采用Adam算法优化损失函数,能有效提高分割准确率。实验结果表明,与基于区域生长的传统分割方法对比,U-Net方法在少量斑点和较多斑点两种情况下F1分别提升9%和6%,验证了其有效性。

关 键 词:T细胞斑点检测  深度学习  U-Net网络  图像分割

T-cell spot test based on U-Net
PEI Xiaoti,L?Lin,HUANG Pengjie,CHEN Zhaoxue,LIN Yong. T-cell spot test based on U-Net[J]. Chinese Journal of Medical Physics, 2021, 0(4): 518-522. DOI: DOI:10.3969/j.issn.1005-202X.2021.04.022
Authors:PEI Xiaoti  L?Lin  HUANG Pengjie  CHEN Zhaoxue  LIN Yong
Affiliation:School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:
Abstract: Aiming at the problems of weak noise resistance and high probability of missed detection in traditional image segmentation method, a T-cell spot segmentation algorithm based on U-Net model is proposed. The segmentation accuracy is effectively improved by smoothing noises through median filter, reducing background interference by graying, and taking Adam algorithm as a loss function. The experimental results show that, compared with the traditional segmentation method based on region growth, the proposed method based on U-Net increases F1 by 9% and 6% in the experiments with a small number of spots and lots of spots, which verifies its effectiveness.
Keywords:Keywords: T-cell spot test deep learning U-Net network image segmentation
本文献已被 CNKI 等数据库收录!
点击此处可从《中国医学物理学杂志》浏览原始摘要信息
点击此处可从《中国医学物理学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号