首页 | 本学科首页   官方微博 | 高级检索  
     


Endogenous proteolytic activity in a rat model of spontaneous cerebral stroke
Authors:Sironi Luigi  Maria Calvio Anna  Bellosta Stefano  Lodetti Barbara  Guerrini Uliano  Monetti Mara  Tremoli Elena  Mussoni Luciana
Affiliation:Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, Italy.
Abstract:
We evaluated the expression of two extra-cellular protease systems in a model of spontaneous cerebrovascular pathology: spontaneously hypertensive stroke-prone rats (SHRSP). The appearance of brain damage in individual animals was imaged and followed by means of magnetic resonance imaging (MRI). In situ zymography of brain slices obtained 3 days after the appearance of brain damage showed an increase in plasminogen activator (PA)/plasmin activity that co-localised with the cerebral damage detected by MRI; there was also concomitant accumulation/activation of inflammatory cells in the damaged area. Proteolytic activity was inhibited by the urokinase-specific inhibitor amiloride but not by an antibody against tissue-type plasminogen activator (t-PA). SDS-PAGE zymography of brain extracts revealed the presence of 58 kDa plasminogen-dependent lysis areas in the ischemic and non-ischemic tissues, and a 33 kDa lysis area in ischemic tissue only. An antibody against t-PA inhibited the former, whereas the latter was inhibited by amiloride. The specific induction of urokinase-type plasminogen activator (u-PA) in the damaged tissue was further confirmed by the fact that both u-PA protein mass and mRNA were markedly increased in the damaged cerebral areas. Concomitant metalloproteinase-2 (MMP-2) activation was only observed in the damaged area. These data suggest that u-PA is expressed and selectively catalyses proteolysis in the injured area of spontaneous brain damage in SHRSP.
Keywords:Cerebral ischemia   Plasminogen activator   Matrix metalloproteinase   Stroke-prone rat   Urokinase   Magnetic resonance imaging
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号