首页 | 本学科首页   官方微博 | 高级检索  
     


Neural networks in radiology: an introduction and evaluation in a signal detection task
Authors:J M Boone  V G Sigillito  G S Shaber
Affiliation:Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
Abstract:
Neural networks are a computer architecture, implementable in software or hardware, that allow an entirely new approach to the computerized perception of data. These so-called connectionist models are inspired by what is known about the architecture of biological neurons, in which the "intelligence" or processing capability of the network is a result of the interconnection strengths between large arrays of nonlinear processing nodes. Neural networks are described and then are used to analyze the common radiological problem of pattern recognition on a noisy background. Classical signal detection theory is used to compare network performance against that of human observers, using computer-generated sets of very simple "nodules." The neural network performed with better accuracy, relative to human observer performance, in the detection of this elementary test object. Although these results may not scale up with more complex images, the favorable performance of neural networks at this level suggests that further investigation is warranted.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号