首页 | 本学科首页   官方微博 | 高级检索  
     

用径向基神经网络预测氯丙嗪的稳态血药浓度
引用本文:刘朝晖,黄榕波,陈庆强,温预关,李明亚. 用径向基神经网络预测氯丙嗪的稳态血药浓度[J]. 中国临床药理学杂志, 2012, 28(7): 536-538
作者姓名:刘朝晖  黄榕波  陈庆强  温预关  李明亚
作者单位:1. 中山市中医院 药剂科,广东 中山 528400;广东药学院 药科学院,广州 510006
2. 广东药学院 基础学院,广州,510006
3. 广州市脑科医院 药剂科,广州,510370
4. 广州市脑科医院 国家药品临床研究基地,广州,510370
5. 广东药学院 药科学院,广州,510006
基金项目:国家自然科学基金资助项目,中山市科技计划基金资助项目
摘    要:目的评价用径向基(RBF)神经网络所建立的预测氯丙嗪稳态血药浓度模型的预测性能。方法将数据分为训练集、校验集和测试集,来建立获取输出变量(37项参数)与输出变量(氯丙嗪稳态血药浓度)两者间关系的RBF网络模型,并评价其预测性能。结果当扩展速度(SP)值为2.8时,所建立的RBF网络模型,预测奋乃静稳态血药浓度的效果和泛化能力较好。结论 RBF网络用于预测氯丙嗪稳态血药浓度是可行的和有效的。

关 键 词:径向基神经网络  氯丙嗪  稳态血药浓度

Predicting steady -state plasma concentration of chlorpromazine using radial basis function neural networks
LIU Zhao-hui , HUANG Rong-bo , CHEN Qing-qiang , WEN Yu-guan , LI Ming-ya. Predicting steady -state plasma concentration of chlorpromazine using radial basis function neural networks[J]. The Chinese Journal of Clinical Pharmacology, 2012, 28(7): 536-538
Authors:LIU Zhao-hui    HUANG Rong-bo    CHEN Qing-qiang    WEN Yu-guan    LI Ming-ya
Affiliation:2a (1.Department of Pharmacy of Traditional Chinese Medicine Hospital of Zhongshan,Guangdong Province 528400,China;2.a.College of Pharmacy;b.Foundation College,Guangdong Pharmaceutical University,Gnangzhou 510006,China;3.a.Department of Pharmacy;b.Department of Clinical Pharmacology,Guangzhou Brain Hospital,Guangzhou 510370,China)
Abstract:Objective To evaluate the performance of a model for predicting the steady-state plasma concentration of chlorpromazine established by using radial basis function(RBF) neural network.Methods The data was divided into training set,validation set and test set to establish the RBF neural network model which had captured the relationships between the input variables(37 parametes) and the output variable(steady-state plasma concentration of chlorpromazine) and evaluate predictive performance of the model.Results When the SPREAD(SP) value was 2.8,the RBF neural network model had the better effect on predicting the steady-state plasma concentration of chlorpromazine and better generalization.Conclusion It is practical and valid for RBF neural network model to be applied to the study of steady-state plasma concentration prediction of chlorpromazine.
Keywords:radial basis function neural networks  chlorpromazine  steady-state plasma concentration
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号