首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of Cathepsin K Increases Modeling‐Based Bone Formation,and Improves Cortical Dimension and Strength in Adult Ovariectomized Monkeys
Authors:Brenda L Pennypacker  Charles M Chen  Helen Zheng  Mei‐Shu Shih  Mary Belfast  Rana Samadfam  Le T Duong
Affiliation:1. Bone Biology Group, Merck Research Laboratories, West Point, PA, USA;2. PharmaLegacy Laboratories, Pudong, Shanghai, China;3. Charles River Laboratories, Preclinical Services Montreal, Quebec, Canada
Abstract:Treatment with the cathepsin K (CatK) inhibitor odanacatib (ODN) protects against bone loss and maintains normal biomechanical properties in the spine and hip of ovariectomized (OVX) preclinical models. Here, we characterized the effects of ODN on the dynamics of cortical modeling and remodeling, and dimension and strength of the central femur in adult OVX‐rhesus monkeys. Animals were treated with vehicle or ODN (6 or 30 mg/kg, once per day [q.d., p.o.]) in prevention mode for 21 months. Calcein and tetracycline double‐labeling were given at 12 and 21 months, and the femoral cross‐sections were subjected to dynamic histomorphometric and cement line analyses. ODN treatment significantly increased periosteal and endocortical bone formation (BFR/BS), accompanied with an increase in endocortical mineralizing surface (102%, p < 0.01) with the 6 mg/kg dose. ODN at both doses reduced remodeling hemiosteon numbers by 51% and 66% (p < 0.05), respectively, and ODN 30 mg/kg numerically reduced activation frequency without affecting wall thickness. On the same endocortical surface, ODN increased all modeling‐based parameters, while reducing intracortical remodeling, consistent with the observed no treatment effects on cortical porosity. ODN 30 mg/kg markedly increased cortical thickness (CtTh, p < 0.001) and reduced marrow area (p < 0.01). Lastly, ODN treatment increased femoral structural strength (p < 0.001). Peak load was positively correlated with the increases in bone mineral content (BMC) (r2 = 0.9057, p < 0.0001) and CtTh (r2 = 0.6866, p < 0.0001). Taken together, by reducing cortical remodeling‐based and stimulating modeling‐based bone formation, ODN significantly improved cortical dimension and strength in OVX monkeys. This novel mechanism of CatK inhibition in stimulating cortical formation suggests that ODN represents a novel therapeutic approach for the treatment of osteoporosis. © 2014 American Society for Bone and Mineral Research.
Keywords:CATHEPSIN K INHIBITOR  OSTEOCLAST  CORTICAL BONE  NONHUMAN PRIMATE  OSTEOPOROSIS  REMODELING  MODELING  BONE FORMATION  OVARIECTOMY
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号