Abnormal cytoskeletal assembly in platelets from uremic patients. |
| |
Authors: | G. Escolar, M. Dí az-Ricart, A. Cases, R. Castillo, A. Ordinas, J. G. White |
| |
Affiliation: | G. Escolar, M. Díaz-Ricart, A. Cases, R. Castillo, A. Ordinas, and J. G. White |
| |
Abstract: | The mechanisms involved in the hemostatic abnormality of uremic patients remain obscure. We have explored the response of normal and uremic platelets to surface activation at the ultrastructural level and analyzed changes in the composition of proteins associated with normal and uremic platelet cytoskeletons after stimulation with thrombin (0.01 and 0.1 U/ml). Cytoskeletons were obtained by extraction with Triton X-100, processed by sodium dodecylsulfate-polyacrylamide gel electrophoresis, and the presence of cytoskeletal proteins analyzed by densitometry. Under static conditions, uremic platelets spread with difficulty on formvar-coated grids. The percentage of platelets that spread fully on this polymer surface was statistically reduced compared with that of control platelets (11 +/- 1.4 vs. 21 +/- 1.6; P < 0.05). An impairment of cytoskeletal organization was observed in resting uremic platelets but abnormalities were more evident after thrombin activation. The incorporation of actin into the cytoskeletons of thrombin-stimulated uremic platelets was significantly reduced with respect to controls (6 +/- 3% vs. 29 +/- 5%; P < 0.01 after 0.01 U/ml and 28 +/- 9% vs. 59 +/- 10%; P < 0.05 after 0.1 U/ml). Decreased associations of actin-binding protein (P < 0.01), alpha-actinin (P < 0.05), and tropomyosin (P < 0.05) with the cytoskeletons of uremic platelets were also noted. No difference was observed for the incorporation of myosin into the cytoskeletons of activated uremic platelets. These results suggest functional and biochemical alterations of the platelet cytoskeleton in uremia, which may contribute to the impairment of platelet function observed in uremic patients. |
| |
Keywords: | |
|
|