Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite |
| |
Authors: | Lewandrowski Kai-Uwe Bondre Shrikar P Wise Donald L Trantolo Debra J |
| |
Affiliation: | Orthopaedic Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA. |
| |
Abstract: | The bioactivity of a nano-hydroxyapatite-augmented, bioresorbable bone graft substitute made from the unsaturated polyester, poly(propylene fumarate), was analyzed by evaluating biocompatibility and osteointegration of implants placed into a rat tibial defect. Three groups of eight animals each were evaluated by grouting bone graft substitutes into 3-mm holes that were made into the anteromedial tibial metaphysis of rats. Thus, a total of 24 animals was included in this study. Two different formulations varying as to the type of hydroxyapatite were used: Group 1 - nano-hydroxyapatite, Group 2 - micron-hydroxyapatite, with a Group 3 control defect remaining unfilled. Animals of each of the three groups were sacrificed in groups of eight at postoperative week three. Histologic analysis revealed best superior biocompatibility and osteointegration of bone graft substitutes when nanohydroxyapatite was employed. At three weeks, there was more reactive new bone formation in this group when compared to the micron-hydroxyapatite group. The control group showed incomplete closure of the defect. This study suggested that nano-hydroxyapatite may improve upon the bioactivity of bone implant and repair materials. The model scaffold used in this study, poly(propylene fumarate), appeared to provide an osteoconductive pathway by which bone will grow in faster. Clinical implications of the use potential advantages of nano-hydroxyapatite on bone repair and orthopaedic implant design are discussed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|