首页 | 本学科首页   官方微博 | 高级检索  
     

一种EEG信号盲分离和分类的神经网络方法
引用本文:游荣义,陈忠. 一种EEG信号盲分离和分类的神经网络方法[J]. 中国生物医学工程学报, 2003, 22(5): 428-432,409
作者姓名:游荣义  陈忠
作者单位:厦门大学物理系,厦门,361005;集美大学计算科学与应用物理系,厦门,361021
基金项目:福建省自然科学基金计划资助项目 (批准号 :C0 3 10 0 2 8)
摘    要:提出一种采用多神经网络处理脑电(EEG)信号的方法。首先,对混有噪声的脑电信号给出一种盲分离的自适应神经算法。通过寻求采样时间序列线性组合的kurtosis系数的局部极值,得出该算法的模型和步骤。在盲分离的基础上,对分离出的估计信号进一步利用Kohonen网络进行分类。将该算法用于300个EEG样本处理,并给出处理结果。

关 键 词:EEG(Electroencephalograph) 盲分离 kurtosis 神经网络
文章编号:0258-8021(2003)-05-428-05

A NEURAL NETWORK METHOD OF BLIND SEPARATION AND CLASSIFICATION OF EEG SIGNALS
YOU Rong-yi ,,CHEN Zhang. A NEURAL NETWORK METHOD OF BLIND SEPARATION AND CLASSIFICATION OF EEG SIGNALS[J]. Chinese Journal of Biomedical Engineering, 2003, 22(5): 428-432,409
Authors:YOU Rong-yi     CHEN Zhang
Affiliation:YOU Rong-yi 1,2,CHEN Zhang1
Abstract:A multiple neural network method of processing EEG signals is proposed. To begin with, a self-adaptive neural algorithm for blind separation of noisy EEG signals was given. By seeking the local extrema of the kurtosis coefficients of a linear combination of the sampled time series, the model and the process of this algorithm were obtained. Based on the blind separation, a further classification of the estimated signals was carried out by using the Kohonen net. Use this algorithm for the processing of 300 EEG samples, the results of the processing was given.
Keywords:EEG(Electroencephalograph)  Blind separation  Kurtosis  Neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号