首页 | 本学科首页   官方微博 | 高级检索  
检索        


Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells
Authors:Latchoumycandane Calivarathan  Anantharam Vellareddy  Kitazawa Masashi  Yang Yongjie  Kanthasamy Arthi  Kanthasamy Anumantha G
Institution:Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, 2008 Veterinary Medicine Bldg., Iowa State University, Ames, IA 50011-1250, USA.
Abstract:Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn induces dopaminergic neuronal cell death remains unclear. In the present study, we sought to investigate the key downstream apoptotic cell signaling events that contribute to Mn-induced cell death in mesencephalic dopaminergic neuronal (N27) cells. Mn exposure induced a dose-dependent increase in neuronal cell death in N27 cells. The cell death was accompanied by sequential activation of mitochondrial-dependent proapoptotic events, including cytochrome c release, caspase-3 activation, and DNA fragmentation, but not caspase-8 activation, indicating that the mitochondrial-dependent apoptotic cascade primarily triggers Mn-induced apoptosis. Notably, Mn treatment proteolytically activated protein kinase Cdelta (PKCdelta), a member of a novel class of protein kinase C. The caspase-3 specific inhibitor benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK) significantly blocked PKCdelta cleavage and its kinase activity, indicating that caspase-3 mediates the proteolytic activation. Cotreatment with the PKCdelta inhibitor rottlerin or the caspase-3 inhibitor Z-DEVD-FMK almost completely blocked Mn-induced DNA fragmentation. Additionally, N27 cells expressing a catalytically inactive PKCdelta(K376R) protein (PKCdelta dominant negative mutant) or a caspase cleavage resistant PKCdelta(D327A) protein (PKCdelta cleavage resistant mutant) were found to be resistant to Mn-induced apoptosis. To further establish the proapoptotic role of PKCdelta, RNA interference-mediated gene knockdown was performed. Small interfering RNA suppression of PKCdelta expression protected N27 cells from Mn-induced apoptotic cell death. Collectively, these results suggest that caspase-3-dependent proteolytic activation of PKCdelta plays a key role in Mn-induced apoptotic cell death.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号