首页 | 本学科首页   官方微博 | 高级检索  
     


Restoration of 3D vestibular sensation in rhesus monkeys using a multichannel vestibular prosthesis
Authors:Dai Chenkai  Fridman Gene Y  Davidovics Natan S  Chiang Bryce  Ahn Joong Ho  Della Santina Charles C
Affiliation:Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave.,Baltimore, MD 21205, USA.
Abstract:
Profound bilateral loss of vestibular hair cell function can cause chronically disabling loss of balance and inability to maintain stable vision during head and body movements. We have previously shown that chinchillas rendered bilaterally vestibular-deficient via intratympanic administration of the ototoxic antibiotic gentamicin regain a more nearly normal 3-dimensional vestibulo-ocular reflex (3D VOR) when head motion information sensed by a head-mounted multichannel vestibular prosthesis (MVP) is encoded via rate-modulated pulsatile stimulation of vestibular nerve branches. Despite significant improvement versus the unaided condition, animals still exhibited some 3D VOR misalignment (i.e., the 3D axis of eye movement responses did not precisely align with the axis of head rotation), presumably due to current spread between a given ampullary nerve's stimulating electrode(s) and afferent fibers in non-targeted branches of the vestibular nerve. Assuming that effects of current spread depend on relative orientation and separation between nerve branches, anatomic differences between chinchilla and human labyrinths may limit the extent to which results in chinchillas accurately predict MVP performance in humans. In this report, we describe the MVP-evoked 3D VOR measured in alert rhesus monkeys, which have labyrinths that are larger than chinchillas and temporal bone anatomy more similar to humans. Electrodes were implanted in five monkeys treated with intratympanic gentamicin to bilaterally ablate vestibular hair cell mechanosensitivity. Eye movements mediated by the 3D VOR were recorded during passive sinusoidal (0.2-5?Hz, peak 50°/s) and acceleration-step (1000°/s(2) to 150°/s) whole-body rotations in darkness about each semicircular canal axis. During constant 100?pulse/s stimulation (i.e., MVP powered ON but set to stimulate each ampullary nerve at a constant mean baseline rate not modulated by head motion), 3D VOR responses to head rotation exhibited profoundly low gain [(mean eye velocity amplitude)/(mean head velocity amplitude)?
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号