Human apo-lactoferrin enhances angiogenesis mediated by vascular endothelial growth factor A in vivo |
| |
Authors: | Norrby Klas |
| |
Affiliation: | Department of Pathology, Institute of Laboratory Medicine, Sahlgrenska Academy, G?teborg University, Gothenburg, Sweden. |
| |
Abstract: | BACKGROUND: Lactoferrin, LF, a multifunctional iron- and heparin-binding protein, present in exocrine body secretions and leukocytes, is remarkably resistant to proteolysis. Ingested bovine iron-unsaturated LF, apo-bLF, suppresses VEGF-A-mediated angiogenesis in a previously described rat mesentery angiogenesis assay, possibly explaining, at least in part, its established anticancer effect in rats and mice. METHODS: Using the same experimental system, we have now studied the effect of (i) ingested human apo-LF, apo-hLF, on angiogenesis mediated by VEGF-A and bFGF, (ii) ingested human iron-saturated LF, holo-hLF, on VEGF-A-mediated angiogenesis and (iii) subcutaneous continuously infused apo-hLF on VEGF-A-mediated angiogenesis. RESULTS: Ingested holo-hLF did not affect VEGF-A-mediated angiogenesis. Ingested apo-hLF (from one and the same batch) significantly enhanced VEGF-A-mediated angiogenesis but did not affect bFGF-mediated angiogenesis. Moreover, subcutaneously infused apo-hLF also significantly stimulated VEGF-A-mediated angiogenesis. CONCLUSION: Taken together, the data suggest that apo-hLF exerts a specific proangiogenic effect in VEGF-A-mediated angiogenesis. Clearly, human and bovine apo-LF exert opposite effects on VEGF-A-induced angiogenesis. Differences in molecular features between human and bovine LFs of possible significance for the outcome are discussed. In hypoxia, compensatory collateral circulation is mediated primarily by VEGF-A. We hypothesize that systemically administered apo-hLF may promote collateral blood vessel formation at hypoxic sites in normal tissue, thus counteracting ischemia and infarction. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|