Mechanism of voltage sensing in Ca2+- and voltage-activated K+ (BK) channels |
| |
Authors: | Willy Carrasquel-Ursulaez,Ignacio Segura,Ignacio Dí az-Franulic,Valeria Má rquez-Miranda,Felipe Echeverrí a,Yenisleidy Lorenzo-Ceballos,Nicolá s Espinoza,Maximiliano Rojas,Jose Antonio Garate,Eduardo Perozo,Osvaldo Alvarez,Fernando D. Gonzalez-Nilo,Ramó n Latorre |
| |
Abstract: | In neurosecretion, allosteric communication between voltage sensors and Ca2+ binding in BK channels is crucially involved in damping excitatory stimuli. Nevertheless, the voltage-sensing mechanism of BK channels is still under debate. Here, based on gating current measurements, we demonstrate that two arginines in the transmembrane segment S4 (R210 and R213) function as the BK gating charges. Significantly, the energy landscape of the gating particles is electrostatically tuned by a network of salt bridges contained in the voltage sensor domain (VSD). Molecular dynamics simulations and proton transport experiments in the hyperpolarization-activated R210H mutant suggest that the electric field drops off within a narrow septum whose boundaries are defined by the gating charges. Unlike Kv channels, the charge movement in BK appears to be limited to a small displacement of the guanidinium moieties of R210 and R213, without significant movement of the S4.Excitable tissues accomplish their signaling functions thanks in part to the interplay of several voltage-sensitive ion channels (1–6). Hence, to understand these processes, it is crucial to establish how voltage-sensitive ion channels sense changes in the electric field across the membrane, an issue that has been a matter of extensive study and intense debate for decades. The most widely accepted mechanism proposes the existence of voltage-sensor domains (VSDs), modules that undergo two or more discrete conformational states in response to changes in the membrane voltage. The simplest model considers two states: active (), which promotes pore opening, and resting (), which promotes channel closing. To accomplish its function, VSDs contain voltage-sensitive particles, which move in response to changes in the electric field. This movement triggers the interconversion between the two discrete conformational states. These voltage-sensing particles are typically the guanidine groups of arginine residues within the S4 transmembrane segment, which undergo a combination of rotational, translational, and tilting movement in response to changes in membrane voltage (7–14).The large-conductance Ca2+- and voltage-activated K+ (BK) channels have a wide distribution in mammalian tissues (15–18), where they participate in a diversity of physiological processes. Their malfunction is often related to diverse pathological conditions (19, 20). BK channel open probability is independently regulated by membrane depolarization and intracellular Ca2+ concentration (21, 22), each stimulus being detected by specialized modules. Like other voltage-sensitive K+ (Kv) channels, BK is an homotetramer in which each of its subunits consists of a pore domain (PD; S5-S6 transmembrane segments), a voltage-sensing domain (VSD; S1–S4 transmembrane segments) containing a positively charged S4, and a cytosolic C-terminal regulatory domain, which contains the Ca2+-binding sites (23, 24). Also, like some members of other K+ channel families (25, 26), the VSD and PD of BK are non–domain swapped (23, 24). BK channels display some distinctive structural and functional features: Despite sharing the selectivity filter sequence with Kv channels, BK unitary conductance and selectivity are exquisitely high (27–30). The BK subunit has an additional transmembrane segment S0 [therefore, its N terminus faces the extracellular medium (31)], and the voltage sensitivity in BK channels is significantly lower than that of Kv channels, presumably because of their lower number of gating charges (32).Although thoroughly studied, research into BK VSD and its voltage dependence has faced several technical obstacles. The relatively small gating charge per channel (32) and the large conductance of the BK pore makes isolating of the gating currents from the ionic currents a tough experimental challenge. In addition, because mutations of VSD residues can produce very large shifts in both the gating charge-voltage ( and the conductance-voltage relationships (33), it is necessary to use extreme voltages to accurately measure the voltage dependence of some mutants. Consequently, the identification of BK gating charges has been addressed by using indirect approaches (33, 34). The combination of electrophysiology measurements and kinetic modeling suggests a decentralized VSD in the BK channel, where four charged residues (D153 and R167 in S2, D186 in S3, and R213 in S4) act as voltage sensor particles (33). A recent report of the atomistic cryo-electron microscopy (cryo-EM) structures of the human BK channel and its homolog in Aplysia californica (AcSlo) revealed minor structural differences between the VSD in both the Ca2+-bound (open pore) and the Ca2+-unbound (closed pore) conformations (23, 24, 35). This result can be explained if the conformational changes of the BK VSD upon activation are small compared to those that occur during the activation of other channels, such as HCN channels (12–14).In this study, we identified voltage-sensing particles in the BK channel by using a direct functional approach, involving gating of current measurements and analysis of the curves spanning 800 mV in the voltage axis. Systematic neutralization of the individual charged residues in the VSD (S1–S4) revealed that only the neutralization of two arginines in S4 (R210 and R213) changed the voltage dependence of the curves. Neutralization of other VSD charges point to roles in tuning of the half-activation voltage of the VSD and its allosteric coupling with the PD. Molecular dynamics (MD) simulations based on the cryo-EM structures of the human BK channel (35) as templates suggested that R210 and R213 lie in a very narrow septum separating intra- and extracellular water-filled vestibules. This interpretation is consistent with the robust hyperpolarization-activated proton currents generated when R210 is mutated to the protonable amino acid histidine. Overall, our results point to a unique and distinctive mode of activation in BK: In contrast to Kv channels, where positive charges move one by one through a charge transfer center (absent in BK channels) that spans the entire electric field (36, 37), charge movement in BK channels is limited to the small displacement of R210 and R213, which itself constitutes a narrow septum where the electric field drops. |
| |
Keywords: | voltage sensitivity allosterism BK channels potassium channels |
|
|