首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative Cell Shape and Diffusional Water Permeability of Red Blood Cells from Indian Elephant (Elephas maximus) and Man (Homo sapiens)
Authors:G. Benga  P. W. Kuchel  B. E. Chapman  G. C. Cox  I. Ghiran  C. H. Gallagher
Affiliation:(1) Department of Cell and Molecular Biology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy Cluj-Napoca, Romania, RO;(2) Department of Biochemistry, AU;(3) The Australian Key Centre for Microscopy and Microanalysis, University of Sydney, NSW, Australia, AU;(4) Taronga Zoo, Mosman, Australia, AU
Abstract:Red blood cells (RBC) from an Indian elephant (Elephas maximus) were studied by light microscopy (LM), scanning electron microscopy (SEM) and a new nuclear magnetic resonance (NMR) ‘imaging’ method based on the translational diffusion of water, NMR q-space analysis. Also, the transmembrane diffusional permeability, P d of water in RBC was measured by using a Mn2+-doping NMR technique, taking human RBC as a reference. The main diameter of the elephant RBC was measured as 9.3 ± 0.7 μm by LM, 9.3 ± 0.7 μm by ‘shrinkage-corrected’ SEM, and 9.3 ± 0.4 μm by q-space anlaysis. The value is ∼1.4 μm larger than that for the human RBC. The values of P d were, in the case of elephant RBC, 3.2 × 10−3 cm/s at 25 °C, 3.9 × 10−3 cm/s at 30 °C, 5.2 × 10−3 cm/s at 37 °C and 6.5 × 10−3 cm/s at 42 °C; all values were significantly lower than the corresponding values of P d for human RBC, namely 4.3 × 10−3 cm/s at 25 °C, 5.2 × 10−3 cm/s at 30 °C, 6.1 × 10−3 cm/s at 37 °C, 7.8 × 10−3 cm/s at 42°C. The maximal inhibition of P d (56%) was reached in 30 min at 37 °C with 2 mm p-chloromercuribenzene sulphonate (PCMBS) for both species of RBC. The basal permeability to water at 37 °C was estimated to be 2.3 × 10−3 cm/s for elephant and 2.6 × 10−3 cm/s for human RBC. The values of the activation energy for water permeability (E a,d ) was significantly higher for elephant RBC (31.9 kJ/mol) than for human RBC (25.9 kJ/mol). This indicated that features other than the number of transporters per cell are likely to be important in defining the differences in water permeability in the RBC from the two species.
Keywords::Aquaporin –   Elephant –   Red blood cells –   Water permeability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号