首页 | 本学科首页   官方微博 | 高级检索  
     


Sulindac metabolites induce caspase- and proteasome-dependent degradation of beta-catenin protein in human colon cancer cells
Authors:Rice Pamela L  Kelloff Jennifer  Sullivan Holly  Driggers Linda J  Beard K Scott  Kuwada Scott  Piazza Gary  Ahnen Dennis J
Affiliation:Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA. pamela.rice@uchsc.edu
Abstract:
Colorectal cancer (CRC) is the second leading cause of cancer death in the USA. Accumulation of beta-catenin protein is nearly ubiquitous in colon adenomas and cancers, presumably due to mutations in the APC or beta-catenin genes that inhibit proteasome-dependent degradation of beta-catenin protein. Substantial clinical, epidemiological, and animal evidence indicate that sulindac and other non-steroidal anti-inflammatory drugs (NSAIDs) prevent the development of CRC. The mechanisms by which sulindac exerts its potent growth inhibitory effects against colon tumor cells are incompletely understood, but down-regulation of beta-catenin has been suggested as one potential mechanism. The goal of this study was to determine the mechanism of beta-catenin protein down-regulation by sulindac metabolites. Treatment of human colon cancer cell lines with apoptotic concentrations of sulindac metabolites (sulindac sulfide, sulindac sulfone) induced a dose- and time-dependent inhibition of beta-catenin protein expression. Inhibition of proteasome activity with MG-132 partially blocked the ability of sulindac sulfide and sulindac sulfone to inhibit beta-catenin protein expression. Pretreatment with the caspase inhibitor z-VAD-fmk blocked morphological signs of apoptosis as well as caspase cleavage, and also partially prevented beta-catenin degradation by sulindac metabolites. These effects occurred in cells with bi-allelic APC mutation (SW480), with wild-type APC but mono-allelic beta-catenin mutation (HCT116) and in cells that lack expression of either COX-1 or -2 (HCT15). These results indicate that loss of beta-catenin protein induced by sulindac metabolites is COX independent and at least partially due to reactivation of beta-catenin proteasome degradation and partially a result of caspase activation during the process of apoptosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号