首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement of gas‐filled microbubble R2* by iron oxide nanoparticles for MRI
Authors:April M. Chow  Kannie W. Y. Chan  Jerry S. Cheung  Ed X. Wu
Affiliation:1. Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong;2. Laboratory of Biomedical Engineering, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong
Abstract:Gas‐filled microbubbles have the potential to become a unique intravascular MR contrast agent due to their magnetic susceptibility effect, biocompatibility, and localized manipulation via ultrasound cavitation. However, microbubble susceptibility effect is relatively weak when compared with other intravascular MR susceptibility contrast agents. In this study, enhancement of microbubble susceptibility effect by entrapping monocrystalline iron oxide nanoparticles (MIONs) into polymeric microbubbles was investigated at 7 T in vitro. Apparent T2 enhancement (ΔR2*) induced by microbubbles was measured to be 79.2 ± 17.5 sec?1 and 301.2 ± 16.8 sec?1 for MION‐free and MION‐entrapped polymeric microbubbles at 5% volume fraction, respectively. ΔR2* and apparent transverse relaxivities (r2*) for MION‐entrapped polymeric microbubbles and MION‐entrapped solid microspheres (without gas core) were also compared, showing the synergistic effect of the gas core with MIONs. This is the first experimental demonstration of microbubble susceptibility enhancement for MRI application. This study indicates that gas‐filled polymeric microbubble susceptibility effect can be substantially increased by incorporating iron oxide nanoparticles into microbubble shells. With such an approach, microbubbles can potentially be visualized with higher sensitivity and lower concentrations by MRI. Magn Reson Med, 2010. © 2009 Wiley‐Liss, Inc.
Keywords:MRI  contrast agent  microbubbles  susceptibility  iron oxide nanoparticles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号