Affiliation: | (1) Department of Physiology, Biophysics and Neurosciences del IPN, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, DF 07300, Mexico;(2) Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico |
Abstract: | We compared in the anesthetized cat the effects of reversible spinalization by cold block on primary afferent depolarization (PAD) and primary afferent hyperpolarization (PAH) elicited in pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pairs ending in the L3 segment, around the Clarkes column nuclei, and the other in the L6 segment within the intermediate zone. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. The results indicate that the segmental and ascending collaterals of individual afferents are subjected to a tonic PAD of descending origin affecting in a differential manner the excitatory and inhibitory actions of cutaneous and joint afferents on the pathways mediating the PAD of group I fibers. The PAD-mediating networks appear to function as distributed systems whose output will be determined by the balance of the segmental and supraspinal influences received at that moment. It is suggested that the descending differential modulation of PAD enables the intraspinal arborizations of the muscle afferents to function as dynamic systems, in which information transmitted to segmental reflex pathways and to Clarkes column neurons by common sources can be decoupled by sensory and descending inputs, and funneled to specific targets according to the motor tasks to be performed. |