首页 | 本学科首页   官方微博 | 高级检索  
     


Neurochemical coding in the myenteric plexus of the upper gastrointestinal tract of hibernating hamsters
Authors:M Shochina  A Belai  L Toole  G Knight  G Burnstock
Affiliation:aRehabilitation Department, Hadassah University Hospital, Hebrew University-Hadassah Medical School, Jerusalem, Israel;bDepartment of Anatomy and Developmental Biology, University College London, Gower Street, London, U.K.
Abstract:As part of our investigation of the plasticity of autonomic nerves in physiological and pathological conditions, we have examined the effect of hibernation on the neurochemical content of myenteric nerves and nerve cell bodies of the upper gastrointestinal tract of the non-seasonal hibernator, the golden hamster. Age matched hamsters kept at room temperature and those kept at 5°C but failed to hibernate, were used as controls. Possible changes in nerve fibers and nerve cell bodies containing the general neuronal marker, protein gene product 9.5, the peptides, vasoactive intestinal polypeptide, substance P (SP) and calcitonin gene-related peptide (CGRP), the catecholamine synthesizing enzyme tyrosine hydroxylase and the enzyme responsible for synthesizing nitric oxide, nitric oxide synthase, were examined in the oesophagus, proventriculus and proximal and distal stomach of the golden hamsters using immunohistochemical techniques. The results of the present study revealed a significant increase in the number of nerve cell bodies and density of nerve fibers containing SP-immunoreactivity and increased number of CGRP-immunoreactive cell bodies but not the other markers examined in the proximal stomach and proventriculus. In contrast, there was no change in the distribution of any of the neuroactive substances examined in the myenteric plexus of the oesophagus and distal stomach. It is suggested that the change in the environment of the hibernating hamsters perturbs the normal digestive physiology in the proximal stomach and proventriculus that is reflected by the selective changes in SP- and CGRP-containing enteric nerves; these changes may be part of protective reflex mechanisms to the environmental changes resulting from hibernation, where upgrading of nerve cell bodies expessing CGRP and SP has occurred.
Keywords:hibernation   enteric nervous system   peptides   nitric oxide synthase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号