首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of incremental concentrations of micron-sized superparamagnetic iron oxide for labelling articular cartilage derived chondroprogenitors
Authors:Elizabeth Vinod  Jithu Varghese James  Upasana Kachroo  Solomon Sathishkumar  Abel Livingston  Boopalan Ramasamy
Affiliation:1. Department of Physiology, Christian Medical College, Vellore, 632002, India;2. Centre for Stem Cell Research, Christian Medical College, Vellore, 632002, India;3. Department of Biochemistry, Christian Medical College, Vellore, 632002, India;4. Department of Orthopaedics, Christian Medical College, Vellore, 632004, India;5. Department of Orthopaedics, Royal Darwin Hospital, Tiwi, NT, 0810, Australia
Abstract:
IntroductionIn vivo tracking of labelled cells can provide valuable information about cellular behavior in the microenvironment, migration and contribution of transplanted cells toward tissue regeneration. Articular cartilage derived chondroprogenitors (CPs) show promise as a candidate for cell-based therapy as they have been classified as mesenchymal stem cells with inherent chondrogenic potential. Iron oxide labelling is known to withstand harsh processing techniques known to be associated with staining of osteochondral specimens.Aim and methodsThe aim of our study was to investigate the feasibility of labelling CPs with micron-sized super paramagnetic iron oxide (M-SPIO) particles and to study the effects of this approach on the labelling efficiency, viability, maintenance of phenotype and potential for differentiation. Human CPs were isolated using fibronectin adhesion assay, passage 2 cells were labelled using three concentrations of M-SPIO (12.75 μg/ml, 25.5 μg/ml and 38.25 μg/ml). At sub confluence, cells were assessed for a) iron uptake by Prussian blue stain and colorimetry b) viability using 7-amino actinomycin D, c) MSC marker expression by flow cytometric analysis and d) trilineage differentiation potential.Results and conclusionIron uptake was higher with increase in M-SPIO concentration whereas CD73, CD90 marker expression significantly decreased and chondrogenic potential appreciably reduced with increase in M-SPIO concentration. In conclusion, 12.75 μg/ml M-SPIO can successfully label human articular cartilage derived chondroprogenitors with minimal effect on cellular viability, MSC marker expression and potential for differentiation.
Keywords:Corresponding author.  Iron labelling  Chondroprogenitors  Viability  Decalcification  MSC markers
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号