Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip |
| |
Authors: | Sangdo Jeong Juhun Lim Mi-Young Kim JiHye Yeom Hyunmin Cho Hyunjung Lee Yong-Beom Shin Jong-Hyun Lee |
| |
Affiliation: | 1.Department of Biomedical Science and Engineering,Gwangju Institute of Science and Technology (GIST),Gwangju,Republic of Korea;2.School of Mechanical Engineering,Gwangju Institute of Science and Technology (GIST),Gwangju,Republic of Korea;3.BioNano Health Guard Research Center (H-GUARD),Daejeon,Republic of Korea;4.Hazards Monitoring Bionano Research Center,Korea Research Institute of Bioscience and Biotechnology (KRIBB),Daejeon,Republic of Korea |
| |
Abstract: | Polymerase chain reaction (PCR) has been widely used for major definite diagnostic tool, but very limited its place used only indoor such as hospital or diagnosis lab. For the rapid on-site detection of pathogen in an outdoor environment, a low-power cordless polymerase chain reaction (PCR) thermal cycler is crucial module. At this point of view, we proposed a low-power PCR thermal cycler that could be operated in an outdoor anywhere. The disposable PCR chip was made of a polymeric (PI/PET) film to reduce the thermal mass. A dual arrangement of the Pt heaters, which were positioned on the top and bottom of the PCR chip, improved the temperature uniformity. The temperature sensor, which was made of the same material as the heater, utilized the temperature dependence of the Pt resistor to ensure simple fabrication of the temperature sensor. Cooling the PCR chip using dual blower fans enabled thermal cycling to operate with a lower power than that of a Peltier element with a high power consumption. The PCR components were electrically connected to a control module that could be operated with a Li-ion battery (12 V), and the PCR conditions (temperature, time, cycle, etc.) were inputted on a touch screen. For 30 PCR cycles, the accumulated power consumption of heating and cooling was 7.3 Wh, which is easily available from a compact battery. Escherichia coli genomic DNA (510 bp) was amplified using the proposed PCR thermal cycler and the disposable PCR chip. A similar DNA amplification capability was confirmed using the proposed portable and low-power thermal cycler compared with a conventional thermal cycler. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|