首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络分析错畸形减数矫治相关因素的研究
引用本文:谢晓秋,王林,王阿明. 人工神经网络分析错畸形减数矫治相关因素的研究[J]. 口腔医学, 2007, 27(1): 35-37
作者姓名:谢晓秋  王林  王阿明
作者单位:1. 南京医科大学口腔医学研究所,南京医科大学口腔医学院口腔正畸科,南京,210029
2. 徐州医学院数理教研室,徐州,221000
摘    要:
目的分析错畸形矫治减数与否的相关因素。方法建立用于是否减数预测的人工神经网络模型。结果采用23个指标:非量化指标2个,量化指标包括模型测量指标5个,头影测量硬组织指标11个,头影测量软组织指标5个。数据处理后得出:其中开唇露齿、IMPA(L1-MP)两个指标贡献大;而指标FMA(FH-MP)贡献小;中间几个指标贡献大小变化范围不是太大,并不代表严格的数量关系。结论用神经网络的方法分析正畸矫治减数与否的相关因素是可行的。

关 键 词:错畸形  减数  人工神经网络
文章编号:1003-9872(2007)01-0035-03
修稿时间:2006-04-07

Using artificial neural network to analyze relative factors in extraction design of orthodontics of malocclusion
XIE Xiao-qiu,WANG Lin,WANG A-ming. Using artificial neural network to analyze relative factors in extraction design of orthodontics of malocclusion[J]. Stomatology, 2007, 27(1): 35-37
Authors:XIE Xiao-qiu  WANG Lin  WANG A-ming
Affiliation:The Research Insthute of Stomatology, Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing 210029, China
Abstract:
Objective To analyze the relative factors when designing whether a malocclusion patient needs extraction before orthodontic treatment or not . Methods Artificial intelligence method is employed to establish an artificial neural network model for forecasting if extraction is needed. Results 23 indexes were input among which 2 were non-quantitative indexes. The 21 quantitative indexes included 5 model analysis ones, 11 hard tissue cephalometric ones and 5 soft tissue cephalometric ones. The results after data processing showed that 2 indexes “anterior tooth protrusion with lip incompetence" and IMPA(L1-MP) mode made the biggest contributions, while FMA(FH-MP) mode very made a small contribution. The contributions of other several indexes varied a little. And the variation was not distinct. Conclusions It's feasible to employ the method of neural network to analyze the relative factors when designing whether a malocclusion patient needs extraction before orthodontic treatmentor or not.
Keywords:malocclusion   extraction   artificial neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号