首页 | 本学科首页   官方微博 | 高级检索  
     


Performance of Sustainable Insulated Wall Panels with Geopolymer Concrete
Authors:Balamurali Kanagaraj  Tattukolla Kiran  Jayakumar Gunasekaran  Anand Nammalvar  Prince Arulraj  Beulah Gnana Ananthi Gurupatham  Krishanu Roy
Affiliation:1.Department of Civil Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India;2.Department of Civil Engineering, Sri Krishna College of Technology, Coimbatore 641042, India;3.Division of Structural Engineering, College of Engineering Guindy Campus, Anna University, Chennai 600025, India;4.School of Engineering, The University of Waikato, Hamilton 3216, New Zealand
Abstract:
The increase in the population creates an increased demand for construction activities with eco-friendly, sustainable, and high-performance materials. Insulated concrete form (ICF) is an emerging technology that satisfies the sustainability demands of the construction sector. ICF is a composite material (a combination of expanded polystyrene (EPS) and geopolymer concrete (GPC)) that enhances the performance of concrete (such as thermal insulation and mechanical properties). To investigate the axial strength performance, five different types of prototypes were created and tested. Type I (without reinforcement): (a) hollow EPS without concrete, (b) alternative cells of EPS filled with concrete, (c) and all the cells of EPS filled with concrete; and Type II (with reinforcement): (d) alternative cells of EPS filled with concrete; (e) and all the cells of EPS filled with concrete. Amongst all the five prototypes, two grades of GPC were employed. M15 and M20 grades are used to examine the effectiveness in terms of cost. For comparing the test results, a reference masonry unit was constructed with conventional clay bricks. The main aim of the investigation is to examine the physical and mechanical performance of sandwich-type ICFs. The presence of polystyrene in ICF changes the failure pattern from brittle to ductile. The result from the study reveals that the Type II prototype, i.e., the specimen with all the cells of EPS filled with concrete and reinforcement, possesses a maximum load-carrying capacity greater than the reference masonry unit. Therefore, the proposed ICF is recommended to replace the conventional load-bearing system and non-load-bearing walls.
Keywords:expanded polystyrene   geopolymer concrete   sustainability   masonry   axial strength
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号