首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Volume Fraction of Reinforcement on Microstructure and Mechanical Properties of In Situ (Ti,Nb)B/Ti2AlNb Composites with Tailored Three-Dimensional Network Architecture
Authors:Ningbo Zhang  Boyu Ju  Taiqing Deng  Sen Fu  Cungao Duan  Yiwei Song  Yijun Jiang  Qin Shen  Caogen Yao  Mingda Liu  Ping Wu  Ziyang Xiu  Wenshu Yang
Abstract:
The mechanical properties of (Ti, Nb)B/Ti2AlNb composites were expected to improve further by utilizing spark plasma sintering (SPS) and inducing the novel three-dimensional network architecture. In this study, (Ti, Nb)B/Ti2AlNb composites with the novel architecture were successfully fabricated by ball milling the LaB6 and Ti2AlNb mixed powders and subsequent SPS consolidation. The influence of the (Ti, Nb)B content on the microstructure and mechanical properties of the composites was revealed by using the scanning electron microscope (SEM), transmission electron microscopy (TEM) and electronic universal testing machine. The microstructural characterization demonstrated that the boride crystallized into a B27 structure and the α2-precipitated amount increased with the (Ti, Nb)B increasing. When the (Ti, Nb)B content reached 4.9 vol%, both the α2 and reinforcement exhibited a continuous distribution along the prior particle boundaries (PPBs). The tensile test displayed that the tensile strength of the composites presented an increasing trend with the increasing (Ti, Nb)B content followed by a decreasing trend. The composite with a 3.2 vol% reinforcement had the optimal mechanical properties; the yield strengths of the composite at 25 and 650 °C were 998.3 and 774.9 MPa, showing an 11.8% and 9.2% improvement when compared with the Ti2AlNb-based alloy. Overall, (Ti, Nb)B possessed an excellent strengthening effect and inhibited the strength weakening of the PPBs area at high temperatures; the reinforcement content mainly affected the mechanical properties of the (Ti, Nb)B/Ti2AlNb composites by altering the α2-precipitated amount and the morphology of (Ti, Nb)B in the PPBs area. Both the continuous precipitation of the brittle α2 phase and the agglomeration of the (Ti, Nb)B reinforcement dramatically deteriorated the mechanical properties.
Keywords:metal-matrix composites   Ti2AlNb   microstructure   mechanical properties   TiB short fiber
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号