首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of 17β-estradiol on action potentials and ionic currents in male rat ventricular myocytes
Authors:F. Berger  U. Borchard  D. Hafner  I. Pütz  T. M. Weis
Affiliation:(1) Institute of Pharmacology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany, DE
Abstract:
This study describes electrophysiological effects of estrogens in isolated male rat ventricular myocytes. According to the literature these cells do not express the nuclear estrogen receptor. Action potentials or membrane currents were recorded in the whole-cell configuration with standard techniques. Action potential durations (APD) measured at a level of 0 mV (APD 0) and –70 mV (APD –70) were prolonged by 17β-estradiol (0.5 Hz stimulation frequency, 24–26° C). Threshold concentration was 1 μmol/l. At the highest concentration used (30 μmol/l) no saturation of the response was reached and APD 0 was 162% and APD –70 was 230% of the respective control. The resting potential remained unaffected in most cells. The prolongation induced by 17β-estradiol developed rapidly and reached a steady state 10 min after start of hormone superfusion. Effects of estrogen were completely reversible during 10–15 min wash-out with hormone-free solution. The extent of prolongation (10 μmol/l 17β-estradiol) was frequency dependent. Expressed as percentage of the respective control APD 0 (or APD –70) was 115% (188%) at 0.05 Hz, 118% (163%) at 0.5 Hz and 99% (129%) at 5 Hz stimulation frequency. The response was stereoselective, because 30 μmol/l 17α-estradiol did not prolong action potentials (APD 0: 101%, APD –70: 104% of the respective control, 0.5 Hz stimulation frequency). The endogenous estrogens estrone and estriol were less effective than 17β-estradiol. With 30 μmol/l estrone (0.5 Hz stimulation frequency) APD 0 was 103% and ADP-70 148% of control and with 30 μmol/l estriol APD 0 was 135% and APD –70 137% of control. The prolongation of action potentials can be explained by inhibition of transient outward current which, in rat ventricle, is composed of fast (i to,f) and slowly (i to,s) inactivating components. At 30 μmol/l 17β-estradiol i to,f was reduced to 50% and i to,s to 43% of their maximal amplitudes. The voltage sensor of i to,f or i to,s was hardly affected. Additionally, 17β-estradiol decreased the calcium current (i Ca,L) to 76% (10 μmol/l) and 38% at 30 μmol/l. The inwardly rectifying potassium current (i K1) was reduced partly with 30 μmol/l 17β-estradiol and its amplitude was 72% of control at –90 mV (inward current flow) and 65% at –40 mV (outward current flow). These results show that 17β-estradiol is active in cardiac cells which do not express the nuclear estrogen receptor. The hormone exerts class III activity and reduces calcium inward current. These effects, however, occur in vitro with concentrations above the physiological level and therefore may be without significance in vivo. Received: 6 May 1997 / Accepted: 18 October 1997
Keywords:17β  -Estradiol  Action potential  Transient  outward currents  Calcium current  Rat ventricular  myocyte
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号