首页 | 本学科首页   官方微博 | 高级检索  
检索        


Improved accuracy and extended flow range for a Fleisch pneumotachograph
Authors:Dr N O T Strömberg  M J Grönkvist
Institution:1. Department of Biomedical Engineering, Link?ping University Hospital, S-581 85, Link?ping, Sweden
2. Division of Human Sciences, National Defence Research Establishment, Aviation Medicine, S-580 13, Link?ping, Sweden
Abstract:A large linear flow range and a small instrumental dead space volume are incompatible properties for a pneumotachometer (PTM). The linearity of a Fleisch number 2 PTM is studied for flows up to 6 litre s-1 (nominal range 0-2 litre s-1) with various up- and downstream geometries. It is hypothesised that using an array of calibration factors (conductance; flow/pressure), instead of a single calibration factor over the entire flow range, could improve accuracy and also extend the applicable flow range. The conductance against pressure characteristics are calculated with a previously described weighted averaging technique based on multiple strokes from a precision syringe. A single conductance value gives stroke volume errors in the range of -5 to 3% (0-2 litre s-1) and -6 to 11% (0-6 litre s-1) for validation using the same geometry as for calibration. The pressure dependent conductance improves accuracy to within -3% and 1% independent of flow range. However, for validation using a different geometry than for calibration, errors range from -5% to +8%. The degree of non-linearity varies between the geometries (range 3-15%) and is highest when using a one-directional valve upstream of the PTM and a Y-shaped connector. In conclusion, a pressure-dependent conductance improves accuracy and can also be used to extend the applicable flow range up to at least three times the nominal flow range.
Keywords:Conductance  Flow calibration  Flowmeter  Extended flow range
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号