首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of the catalytic activity of hypoxia-inducible factor-1alpha-prolyl-hydroxylase 2 by a MYND-type zinc finger
Authors:Choi Kyung-Ok  Lee Taekyong  Lee Naery  Kim Ji-Hyun  Yang Eun Gyeong  Yoon Jung Min  Kim Jin Hwan  Lee Tae Gyu  Park Hyunsung
Affiliation:Department of Life Science, University of Seoul, 90 Cheonnong-dong, Tongdaemun-gu, Seoul 130-743, Korea.
Abstract:
Hypoxia-induced gene expression is initiated when the hypoxia-inducible factor-1 (HIF-1) alpha subunit is stabilized in response to a lack of oxygen. An HIF-1alpha-specific prolyl-hydroxylase (PHD) catalyzes hydroxylation of the proline-564 and/or -402 residues of HIF-1alpha by an oxygen molecule. The hydroxyproline then interacts with the ubiquitin E3 ligase von Hippel Lindau protein and is degraded by an ubiquitin-dependent proteasome. PHD2 is the most active of three PHD isoforms in hydroxylating HIF-1alpha. Structural analysis showed that the N-terminal region of PHD2 contains a Myeloid translocation protein 8, Nervy, and DEAF1 (MYND)-type zinc finger domain, whereas the catalytic domain is located in its C-terminal region. We found that deletion of the MYND domain increased the activity of both recombinant PHD2 protein and in vitro-translated PHD2. The zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine augmented the activity of wild-type PHD2-F but not that of PHD2 lacking the MYND domain, confirming that the zinc finger domain is inhibitory. Overexpression of PHD2 lacking the MYND domain caused a greater reduction in the stability and function of HIF-1alpha than did overexpression of wild-type PHD2, indicating that the MYND domain also inhibits the catalytic activity of PHD2 in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号