Caffeine stimulates Ca(2+) entry through store-operated channels to activate tyrosine hydroxylase in bovine chromaffin cells |
| |
Authors: | McKenzie Sacha Marley Philip D |
| |
Affiliation: | Department of Pharmacology, University of Melbourne, VIC 3010, Australia. |
| |
Abstract: | The ability of caffeine-induced store Ca(2+) mobilization to activate tyrosine hydroxylase was studied in bovine adrenal chromaffin cells. Caffeine increased tyrosine hydroxylase activity over 10 min with an EC(50) of 3 mm and maximum effect at 20 mm. The maximum response to caffeine was substantial, being almost one third that of the strongest agonists acetylcholine and PACAP-27, about half that for K(+) and similar to that for histamine. In contrast, catecholamine secretion evoked by caffeine was small, being less than 10% of the response to strong agonists. Caffeine-induced tyrosine hydroxylase activation was not mimicked or prevented by phosphodiesterase inhibition with isobutylmethylxanthine, nor was it mimicked by an equimolar concentration of sucrose. However, the effect of caffeine was prevented by depleting intracellular Ca(2+) stores by thapsigargin pretreatment, and reduced substantially by removing extracellular Ca(2+), by blocking Ca(2+) channels with Co(2+) or Ni(2+), or by inhibiting store-operated channels with 2-aminoethyl diphenylborate. It was not affected by inhibiting Ca(2+) entry through voltage-operated Ca(2+)-channels or by tetrodotoxin. The effect of caffeine was mimicked by acute thapsigargin treatment or by depleting intracellular Ca(2+) stores in Ca(2+)-free buffer and then reintroducing extracellular Ca(2+). The results indicate that mobilizing store Ca(2+) with caffeine is a very effective mechanism for activating tyrosine hydroxylase and that the majority of this response depends on extracellular Ca(2+) entry through store-operated channels. They also suggest that extracellular Ca(2+) entry through such channels regulates cellular responses differently to Ca(2+) entry through voltage-operated Ca(2+) channels. |
| |
Keywords: | capacitative Ca2+ entry intracellular Ca2+ stores ryanodine receptors store-operated channels |
本文献已被 PubMed 等数据库收录! |
|