首页 | 本学科首页   官方微博 | 高级检索  
     


Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of Salmonella enterica
Authors:Abeer Ahmed Rushdy  Mona Ibrahim Mabrouk  Ferialla Abdel-Hamid Abu-Sef  Zeinab Hassan Kheiralla  Said Mohamed Abdel -All  Neveen Mohamed Saleh
Affiliation:1. College of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt;2. National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
Abstract:ObjectivesTo study the potential factors include gene mutation, efflux pump and alteration of permeability associated with quinolone-resistance of Salmonella enterica strains isolated from patients with acute gastroenteritis and to evaluate the degree of synergistic activity of efflux pump inhibitors when combined with ciprofloxacin against resistant isolates.MethodsAntimicrobial resistance patterns of fifty-eight Salmonella isolates were tested. Five isolates were selected to study the mechanism of resistance associated with quinolone group, including mutation in topoisomerase-encoding gene, altered cell permeability, and expression of an active efflux system. In addition, the combination between antibiotics and efflux pump inhibitors to overcome the microbial resistance was evaluated.ResultsFive Salmonella isolates totally resistant to all quinolones were studied. All isolates showed alterations in outer membrane proteins including disappearance of some or all of these proteins (Omp-A, Omp-C, Omp-D and Omp-F). Minimum inhibitory concentration values of ciprofloxacin were determined in the presence/absence of the efflux pump inhibitors: carbonyl cyanide m-chlorophenylhydrazone, norepinephrin and trimethoprim. Minimum inhibitory concentration values for two of the isolates were 2–4 fold lower with the addition of efflux pump inhibitors. All five Salmonella isolates were amplified for gyrA and parC genes and only two isolates were sequenced. S. Enteritidis 22 had double mutations at codon 83 and 87 in addition to three mutations at parC at codons 67, 76 and 80 whereas S. Typhimurium 57 had three mutations at codons 83, 87 and 119, but no mutations at parC.ConclusionsEfflux pump inhibitors may inhibit the major AcrAB-TolC in Salmonella efflux systems which are the major efflux pumps responsible for multidrug resistance in Gram-negative clinical isolates.
Keywords:Fluoroquinolone resistance  Efflux pump  Outer membrane protein  Chromosomal mutations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号