首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model
Authors:Jie Tan  Demin Han  Jie Wang  Ting Liu  Tong Wang  Hongrui Zang  Yunchuan Li  Xiangdong Wang
Affiliation:(1) Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otolaryngology, Dong Jiao Min Xiang 1, Eastern District, Beijing, 100730, People’s Republic of China;
Abstract:Our purpose is to simulate the airflow inside the healthy Chinese nose with normal nasal structure and function by computational fluid dynamics (CFD) method and to analyze the relationship between the airflow and physiological function. In this study, we used the software MIMICS 13.0 to construct 20 3-dimensional (3-D) models based on the computer tomography scans of Chinese adults’ nose with normal nasal structure and function. Thereafter, numerical simulations were carried out using the software FLUENT 6.3. Then the characteristics of airflow inside the airway and sinuses were demonstrated qualitatively and quantitatively in steady state. We found that during the inhalation phase, the vortices and turbulences were located at anterior part and bottom of the nasal cavity. But there is no vortex in the whole nasal cavity during the expiratory phase. The distributions of pressure and wall shear stress are different in two phases. The maximum airflow velocity occurs around the plane of palatine velum during both inspiratory and expiratory phases. After the airflow passed the nasal valve, the peak velocity of inhaled airflow decreases and it increases again at the postnaris. Vice versa, the exhaled airflow decelerates after it passed the postnaris and it accelerates again at nasal valve. The data collected in this presentation validates the effectiveness of CFD simulation in the study of airflow in the nasal cavity. Nasal airflow is closely related to the structure and physiological functions of the nasal cavity. CFD may thus also be used to study nasal airflow changes resulting from abnormal nasal structure and nasal diseases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号