Neural regenerative strategies incorporating biomolecular axon guidance signals |
| |
Authors: | McCormick Aleesha M Leipzig Nic D |
| |
Affiliation: | (1) Department of Chemical and Biomolecular Engineering, The University of Akron, 200 East Buchtel Common, Whitby Hall 211, Akron, OH 44325-3906, USA; |
| |
Abstract: | There are currently no acceptable cures for central nervous system injuries, and damage induced large gaps in the peripheral nervous system have been challenging to bridge to restore neural functionality. Innervation by neurons is made possible by the growth cone. This dynamic structure is unique to neurons, and can directly sense physical and chemical activity in its environment, utilizing these cues to propel axons to precisely reach their targets. Guidance can occur through chemoattractive factors such as neurotrophins and netrins, chemorepulsive agents like semaphorins and slits, or contact-mediated molecules such as ephrins and those located in the extracellular matrix. The understanding of biomolecular activity during nervous system development and injury has generated new techniques and tactics for improving and restoring function to the nervous system after injury. This review will focus on the major neuronal guidance molecules and their utility in current tissue engineering and neural regenerative strategies. |
| |
Keywords: | |
本文献已被 PubMed SpringerLink 等数据库收录! |
|