WHERE ARE THE GATES IN GAP JUNCTION CHANNELS? |
| |
Authors: | Gerhard Dahl |
| |
Affiliation: | Department of Physiology and Biophysics, University of Miami, School of Medicine, Miami, Florida, USA |
| |
Abstract: | 1. In the formation and function of gap junction channels two types of gates ought to be discriminated: the docking gate and the channel gates proper. The docking gate is involved in the transformation of a closed hemichannel to a patent gap junction channel. By definition the trigger mechanism for this gate and maybe even the gate itself is contained within the extracellular loops of the gap junction proteins, the connexins. The channel gates proper determine the open and closed states of the complete gap junction channels. 2. Probing the docking gate by mutagenesis of connexins and by synthetic peptides indicates that this gate is the consequence of complex interactions between a large fraction of the amino acids comprising the extracellular loops. Probably both inter- and intra-molecular interactions are involved, and disulfide exchange may be entailed in the stabilization of the open and closed states. 3. Of the various effectors on the channel gate(s) the voltage effects have obtained the most scrutiny to date. The response of gap junction channels and hemichannels is diverse, the various channels respond differently to transjunctional and membrane potential. No equivalent to the S4 segment representing the voltage sensor in other voltage dependent ion channels is present in the connexin sequences, instead mutations in various segments of connexins have been reported to affect the voltage dependence of gap junction channels. To understand the complexity of voltage effects on gap junction channels, non-connexin peptides may need to be considered as voltage sensors or as modifiers thereof. |
| |
Keywords: | gap junction connexin docking gate voltage gate |
|
|