首页 | 本学科首页   官方微博 | 高级检索  
     


Peripheral bronchial identification on chest CT using unsupervised machine learning
Authors:Daniel A. Moses  Laughlin Dawes  Claude Sammut  Tatjana Zrimec
Affiliation:1.Department of Radiology,Prince of Wales Hospital,Sydney,Australia;2.School of Computer Science and Engineering,University of New South Wales,Sydney,Australia;3.Faculty of Mathematics, Natural Sciences and Information Technologies,University of Primorska,Koper,Slovenia
Abstract:

Purpose

To automatically identify small- to medium-diameter bronchial segments distributed throughout the lungs.

Methods

We segment the peripheral pulmonary vascular tree and construct cross-sectional images perpendicular to the lung vasculature. The bronchi running with pulmonary arteries appear as concentric rings, and potential center points that lie within the bronchi are identified by looking for circles (using the circular Hough transform) and rings (using a novel variable ring filter). The number of candidate bronchial center points are further reduced by using agglomerative hierarchical clustering applied to the points represented with 18 features pertaining to their 3D position, orientation and appearance of the surrounding cross-sectional image. Resulting clusters corresponded to bronchial segments. Parameters of the algorithm are varied and applied to two experimental data sets to find the best values for bronchial identification. The optimized algorithm was then applied to a further 21 CT studies obtained using two different CT vendors.

Results

The parameters that result in the most number of true positive bronchial center points with > 95% precision are a tolerance of 0.15 for the hierarchical clustering algorithm and a threshold of 75 HU with 10 spokes for the ring filter. Overall, the performance on all 21 test data sets from CT scans from both vendors demonstrates a mean number of 563 bronchial points detected per CT study, with a mean precision of 96%. The detected points across this group of test data sets are relatively uniformly distributed spatially with respect to spherical coordinates with the origin at the center of the test imaging data sets.

Conclusion

We have constructed a robust algorithm for automatic detection of small- to medium-diameter bronchial segments throughout the lungs using a combination of knowledge-based approaches and unsupervised machine learning. It appears robust over two different CT vendors with similar acquisition parameters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号