首页 | 本学科首页   官方微博 | 高级检索  
检索        


Hydrolytic stability of composite repair bond
Authors:Papacchini Federica  Toledano Manuel  Monticelli Francesca  Osorio Raquel  Radovic Ivana  Polimeni Antonella  García-Godoy Franklin  Ferrari Marco
Institution:Department of Dental Materials and Restorative Dentistry, University of Siena, Policlinico Le Scotte, Viale Bracci, Siena, Italy.
Abstract:The hydrolytic stability of composite repairs is a desirable property. In the present study, the composite repair microtensile bond strength, failure mode distribution, and nanoleakage occurrence before and after thermocycling were evaluated. Standardized, 1-month-old composite substrates were roughened, cleaned, and randomly assigned to seven groups according to the intermediate agent applied. Resin-based, silane-based, and combined silane/adhesive coupling agents were investigated. The same resin composite as the substrate was used for repair. For each group, repaired samples were wet stored for 24 h (37 degrees C) or thermocycled (5,000 cycles, 5-55 degrees C). Failure mode and silver nitrate penetration were examined by stereomicroscopy. Intermediate agent, experimental condition, and their interaction were significant factors. Hydrophobic flowable composites resulted in statistically higher repair strengths, lower occurrence of adhesive failures, and good quality interfacial coupling without any silver uptake in both conditions. Light-curing, hydrophilic resin monomer-based intermediate agents, although not affected by thermocycling, showed a more pronounced silver penetration. The composite repair strength of a self-curing silane/adhesive agent was significantly affected by thermal stresses, despite the absence of silver uptake. A prehydrolized silane agent recorded the lowest repair strength, with minimal or no evidence of interfacial silver impregnation after thermocycling. In conclusion, flowability and hydrophobic nature can be considered important properties when selecting intermediate agents for composite repair.
Keywords:bonding resin  flowable resin  microtensile bond strength  silane coupling agent  silver nitrate
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号