首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的肺癌计算机辅助诊断
引用本文:李斌,李科宇,汤渝玲,李慧. 基于深度学习的肺癌计算机辅助诊断[J]. 当代医学, 2021, 27(9): 89-93. DOI: 10.3969/j.issn.1009-4393.2021.09.035
作者姓名:李斌  李科宇  汤渝玲  李慧
作者单位:南华大学附属长沙医院,湖南 长沙 410005;长沙市第一医院呼吸内科,湖南 长沙 410005;长沙市第一医院呼吸内科,湖南 长沙 410005;长沙市第一医院呼吸内科,湖南 长沙 410005
基金项目:湖南省卫生计生委科研计划课题项目;湖南省自然科学基金;长沙市科技计划项目
摘    要:
目的 比较不同传统深度学习模式在肺癌诊断和分类中的应用价值.方法 选取2016年1月至2017年11月在长沙市第一医院肿瘤内科接受治疗的33例患者为研究对象.获取非小细胞肺癌和小细胞肺癌活检标本,并进行染色.切片标本由2名经验丰富的病理学家进行诊断.采用多种深度学习方法区分癌症和非癌症活检.比较不同传统深度学习模式在肺...

关 键 词:深度学习  卷积神经网络  人工智能  肺癌  诊断

Computer-aided diagnosis of lung carcinoma using deep learning
LI Bin,LI Keyu,TANG Yuling,LI Hui. Computer-aided diagnosis of lung carcinoma using deep learning[J]. Contemporary Medicine, 2021, 27(9): 89-93. DOI: 10.3969/j.issn.1009-4393.2021.09.035
Authors:LI Bin  LI Keyu  TANG Yuling  LI Hui
Affiliation:(Changsha Hospital Affiliated to University of South China,Changsha,Hunan,410005,China;Department of Respiratory Medicine,the First Hospital of Changsha City,Changsha,Hunan,410005,China)
Abstract:
Objective To compare different conventional deep learning models in lung cancer diagnosis and classification.Methods 33 patients who received treatment in the Department of Medical Oncology of First Hospital of Changsha City from January 2016 to November 2017 were selected as reseach subjects.The biopsy specimens of non-small cell lung cancer and small cell lung cancer were obtained and stained.The biopsy specimen was diagnosed by two experienced pathologists.Multiple deep learning methods were used to distinguish between cancer and non-cancer biopsy specimens.Compared the application value of different traditional deep learning models in the diagnosis and classification of lung cancer.Results This study tested several popular CNN architectures for the patch-based classification:AlexNet,VGG,ResNet and SqueezeNet,two types of training schemes were compared:training from scratch and fine-tuning the entire pre-training network.Deep learning models give reasonable AUC(0.8810-0.9119),training from scratch showed AUC higher than fine tuning the whole network except ResNet-50.Conclusion The deep learning analysis could speed up the detection process for the whole-slide image(WSI)and keep the comparable detection rate with human observer.
Keywords:Deep learning  Convolutional Neural Networks  Artificial intelligence  Lung cancer  Diagnosis
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号