首页 | 本学科首页   官方微博 | 高级检索  
     


Stress-induced impairment of inhibitory avoidance learning in female neuromedin B receptor-deficient mice
Authors:Yamada Kazuyuki  Santo-Yamada Yuko  Wada Keiji
Affiliation:Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan. kaz-yamada@brain.riken.go.jp
Abstract:Neuromedin B (NMB) is a mammalian bombesin (BN)-like peptide that exerts its function via the neuromedin B receptor (NMB-R). The NMB/NMB-R system is involved in stress response, and therefore we examined behavioral properties in female mice lacking NMB-R using a restraint-induced stress paradigm. Thirty minutes of restraint in a wire mesh cage constituted a sufficient stress stimulus for mice as evidenced by elevated blood glucose concentrations in stressed wild-type and NMB-R-deficient mice. Using a one-trial passive avoidance test, stressed NMB-R-deficient mice exhibited a marked reduction in memory performance. NMB-R-deficient mice exhibited elevated spontaneous activity in a novel environment compared to non-stressed mutant mice after 30-min stress, and a similar difference was also observed between stressed/non-stressed wild-type mice. An elevated plus maze test showed that the stress stimulus had no effect on anxiety in either wild-type or NMB-R-deficient mice. Furthermore, pain response of wild-type and NMB-R-deficient mice induced by electric foot shock was not affected under either stressed or non-stressed conditions. These results indicate that impaired memory performance in stressed NMB-R-deficient mice is not a consequence of changes in spontaneous activity, anxiety, or pain response, and suggest that the NMB/NMB-R pathway may play a role in regulating the stress response via the neural system that controls learning and memory.
Keywords:Neuromedin B (NMB)   Neuromedin B receptor (NMB-R)   Restraint-induced stress   One-trial passive avoidance learning   Spontaneous activity   Blood glucose concentration   Elevated plus maze test   Pain response   Knockout mice
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号