首页 | 本学科首页   官方微博 | 高级检索  
     

卵巢癌多药耐药相关基因的生物信息学分析
引用本文:陈昌贤,胡艳玲,李力. 卵巢癌多药耐药相关基因的生物信息学分析[J]. 肿瘤防治研究, 2016, 43(6): 492-496. DOI: 10.3971/j.issn.1000-8578.2016.06.012
作者姓名:陈昌贤  胡艳玲  李力
作者单位:1. 530021 南宁,广西医科大学附属肿瘤医院妇瘤科;2. 530021 南宁,广西医科大学医学实验中心生物信息学教研室
基金项目:国家高技术研究发展计划( 8 6 3 计划)( 2 0 1 2AA0 2A5 0 7 ) ; 广西自然科学基金( 桂财教2014-118号);广西科学研究与技术开发计划课题(桂科攻14124004-1-24)
摘    要:
目的 筛选与挖掘卵巢癌多药耐药相关基因及其生物信息。方法 基于GSE41499、GSE33482、GSE15372和GSE28739等4套来源不同的卵巢癌化疗耐药与敏感基因芯片表达谱数据集, 综合运用差异基因表达分析、基因通路富集分析和文本挖掘等生物信息学方法预测卵巢癌多药耐药相关基因及通路。结果 MAPK信号通路、泛素介导的蛋白质水解、轴突导向、焦点粘连、神经营养素信号通路、癌症通路、肾细胞癌、柠檬酸循环、类萜骨干生物合成、错配修复和亨廷顿氏舞蹈病等11条基因通路是出现频率相对较高的显著性上调通路(P<0.05),甘油脂、戊醣酸途径、果糖和甘露糖代谢、谷胱甘肽代谢、蛋白酶体、p53信号通路和溶酶体等7条基因通路是出现频率相对较高的显著性下调通路(P<0.05);进一步的文本挖掘发现,ACO1、BDNF、CXCR4、HMGCR和NRP1等5个上调表达基因(P<0.05)和CDKN2C、FAS和SKP2等3个下调表达基因(P<0.05)可能与卵巢癌多药耐药形成相关。结论 卵巢癌多药耐药机制的形成可能涉及到多种不同的通路和基因,其中ACO1、BDNF、CXCR4、HMGCR、NRP1、CDKN2C、FAS和SKP2等基因可能在其中发挥着关键作用,后续研究将对其进行实验和临床双重验证。

关 键 词:卵巢癌  多药耐药  基因  生物信息学分析  筛选与挖掘  
收稿时间:2015-07-20

Bioinformatics Analysis of Genes Related to Multidrug Resistance in Ovarian Cancer
CHEN Changxian,HU Yanling,LI Li. Bioinformatics Analysis of Genes Related to Multidrug Resistance in Ovarian Cancer[J]. Cancer Research on Prevention and Treatment, 2016, 43(6): 492-496. DOI: 10.3971/j.issn.1000-8578.2016.06.012
Authors:CHEN Changxian  HU Yanling  LI Li
Affiliation:1. Department of Gynecological Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China; 2. Department of Bioinformatics, Medical Research Center, Guangxi Medical University, Nanning 530021, China
Abstract:
Objective To screen and mine the genes related to multidrug resistance (MDR) in ovarian cancer (OC) and their biological information. Methods Based on four different microarray expression profiles (GSE41499, GSE33482, GSE15372 and GSE28739) between resistant samples and sensitive samples related to OC, we performed a comprehensive bioinformatics analysis through gene expression analysis, genetic pathway enrichment analysis and text mining to predict the pathways and their genes related to MDR in OC. Results Eleven significantly upregulated pathways were found frequently among four OC microarray datasets, including MAPK signaling pathway, ubiquitin-mediated proteolysis, axon guidance, focal adhesion, neurotrophin signaling pathway, pathways in cancer, renal cell carcinoma, citrate cycle, terpenoid backbone biosynthesis, mismatch repair and Huntington’s disease(P<0.05); and seven significantly downregulated pathways were found frequently, including glycerolipid metabolism, pentose phosphate pathway, fructose and mannose metabolism, glutathione metabolism, proteasome, p53 signaling pathway and lysosome(P<0.05). By further text mining methods, we found five significantly upregulated genes, including ACO1, BDNF, CXCR4, HMGCR and NRP1(P<0.05), as well as three significantly downregulated genes, including CDKN2C, FAS and SKP2(P<0.05), might be associated with MDR in OC. Conclusion OC MDR might be involved in various pathways and genes. ACO1, BDNF, CXCR4, HMGCR, NRP1, CDKN2C, FAS and SKP2 might play crucial roles in those pathways. Follow-up study would validate the roles of those genes in the experiments and clinical practice.
Keywords:Ovarian cancer  MDR  Gene  Bioinformatics analysis  Screen and mine  
点击此处可从《肿瘤防治研究》浏览原始摘要信息
点击此处可从《肿瘤防治研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号