Background: Previous electrophysiologic studies have implicated voltage-dependent Na+ channels as a molecular site of action for propofol. This study considered the effects of propofol on Na+ channel-mediated Na+ influx and neurotransmitter release in rat brain synaptosomes (isolated presynaptic nerve terminals).Methods: Purified cerebrocortical synaptosomes from adult rats were used to determine the effects of propofol on Na+ influx through voltage-dependent Na+ channels (measured using22 Na+) and intracellular [Na+] (measured by ion-specific spectrofluorimetry). For comparison, the effects of propofol on synaptosomal glutamate release evoked by 4-aminopyridine (Na+ channel dependent), veratridine (Na (+) channel dependent), and KCl (Na+ channel independent) were studied using enzyme-coupled fluorimetry. Results: Propofol inhibited veratridine-evoked22 Na+ influx (inhibitory concentration of 50% [IC50] = 46 micro Meter; 8.9 micro Meter free) and changes in intracellular [Na+] (IC50 = 13 micro Meter; 6.3 micro Meter free) in synaptosomes in a dose-dependent manner. Propofol also inhibited 4-aminopyridine-evoked (IC50 = 39 micro Meter; 19 micro Meter free) and veratridine (20 micro Meter)-evoked (IC (50) = 30 micro Meter; 14 micro Meter free), but not KCl-evoked (up to 100 micro Meter) glutamate release from synaptosomes. |