首页 | 本学科首页   官方微博 | 高级检索  
     


Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain Radiographs
Authors:Jae Won Choi  Yeon Jin Cho  Ji Young Ha  Yun Young Lee  Seok Young Koh  June Young Seo  Young Hun Choi  Jung-Eun Cheon  Ji Hoon Phi  Injoon Kim  Jaekwang Yang  Woo Sun Kim
Abstract:ObjectiveTo develop and evaluate a deep learning-based artificial intelligence (AI) model for detecting skull fractures on plain radiographs in children.Materials and MethodsThis retrospective multi-center study consisted of a development dataset acquired from two hospitals (n = 149 and 264) and an external test set (n = 95) from a third hospital. Datasets included children with head trauma who underwent both skull radiography and cranial computed tomography (CT). The development dataset was split into training, tuning, and internal test sets in a ratio of 7:1:2. The reference standard for skull fracture was cranial CT. Two radiology residents, a pediatric radiologist, and two emergency physicians participated in a two-session observer study on an external test set with and without AI assistance. We obtained the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity along with their 95% confidence intervals (CIs).ResultsThe AI model showed an AUROC of 0.922 (95% CI, 0.842–0.969) in the internal test set and 0.870 (95% CI, 0.785–0.930) in the external test set. The model had a sensitivity of 81.1% (95% CI, 64.8%–92.0%) and specificity of 91.3% (95% CI, 79.2%–97.6%) for the internal test set and 78.9% (95% CI, 54.4%–93.9%) and 88.2% (95% CI, 78.7%–94.4%), respectively, for the external test set. With the model’s assistance, significant AUROC improvement was observed in radiology residents (pooled results) and emergency physicians (pooled results) with the difference from reading without AI assistance of 0.094 (95% CI, 0.020–0.168; p = 0.012) and 0.069 (95% CI, 0.002–0.136; p = 0.043), respectively, but not in the pediatric radiologist with the difference of 0.008 (95% CI, -0.074–0.090; p = 0.850).ConclusionA deep learning-based AI model improved the performance of inexperienced radiologists and emergency physicians in diagnosing pediatric skull fractures on plain radiographs.
Keywords:Deep learning   Artificial intelligence   Skull fracture   Pediatric   Plain radiograph
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号