首页 | 本学科首页   官方微博 | 高级检索  
     


Constructing the major biosynthesis pathways for amino acids in the brown planthopper,Nilaparvata lugens Stål (Hemiptera: Delphacidae), based on the transcriptome data
Authors:P‐J. Wan  L. Yang  W‐X. Wang  J‐M. Fan  Q. Fu  G‐Q. Li
Affiliation:1. State Key Laboratory of Rice Biology, China National Rice Research Institute, , Hangzhou, China;2. Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, , Nanjing, China
Abstract:Nilaparvata lugens is a serious phloem‐feeding pest of rice throughout Asia. Rice phloem sap can meet its nutrition requirement for sugars but not for some essential amino acids such as isoleucine, leucine, methionine, phenylalanine, tryptophan, lysine, arginine and histidine. N. lugens harbours yeast‐like symbionts in mycetocytes formed by abdominal fat body cells. Removal of the symbionts results in negative physiological effects, suggesting that the symbionts play a pivotal role in the nitrogen metabolism. In the present paper, 521 mRNA expressed sequence tags (ESTs) encoding 126 enzymes that were involved in amino acid biosynthesis were identified based on a transcriptome data, reverse transcription (RT)‐PCR and rapid amplification of cDNA ends. Similarity analysis, codon usage bias, along with tissue‐biased expression and phylogenetic analysis of a subset of ESTs, suggest that 437 ESTs out of the 521 originate from symbionts, and the remaining 84 mRNA fragments come from N. lugens. Accordingly, the biosynthesis pathways for 20 amino acids were manually constructed. It is postulated that both N. lugens and its symbiont can independently assimilate ammonia and biosynthesize seven non‐essential amino acids: glutamate; glutamine; aspartate; asparagine; alanine; serine; and glycine. N. lugens and symbiont enzymes may work collaboratively to catalyse the biosynthesis of proline, methionine, valine, leucine, isoleucine, phenylalanine and tyrosine. We infer from this that symbionts function in the biosynthesis of lysine, arginine, tryptophan, threonine, histidine and cysteine. Our data support the previously proposed hypothesis, i.e. the yeast‐like symbionts compensate for, at least partially, the amino acid needs of N. lugens.
Keywords:Nilaparvata   lugens  amino acid  biosynthesis  enzyme  symbiont
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号