首页 | 本学科首页   官方微博 | 高级检索  
     


Human vascular smooth muscle cells and endothelial cells lack catalase activity and are susceptible to hydrogen peroxide
Authors:Masao Shingu  Kazunori Yoshioka  Masashi Nobunaga  Koji Yoshida
Affiliation:(1) Department of Internal Medicine, Medical Institute of Bioregulation Kyushu University 69, 874 Beppu, Japan;(2) Department of Obstetrics and Gynecology, Medical Institute of Bioregulation Kyushu University 69, 874 Beppu, Japan
Abstract:
5Cr release as lytic and cell detachment as nonlytic injury were employed to estimate neutrophil-mediated injury of cultured human vascular smooth muscle cells and endothelial cells. The reagents hydrogen peroxide or hypoxanthine-xanthine oxidase produced dose-dependent killing and nonlytic cell detachment, which were specifically inhibited by catalase but not by superoxide dismutase. The concentration of hydrogen peroxide or xanthine oxidase to induce cell detachment was less than lytic dose, suggesting that cell detachment was a much more sensitive assay of injury. Neutrophil-mediated cell lysis averaged 15% at most and was mostly dependent on hydrogen peroxide, while neutrophil-mediated cell detachment was nearly 100% and its dependency on hydrogen peroxide varied from 46% to 60%. These results suggest that vascular smooth muscle cells and endothelial cells in neutrophil-mediated events are destroyed by a hydrogen peroxide-dependent process, mainly via a nonlytic cell detachment mechanism. There was no striking difference of sensitivity to hydrogen peroxide between vascular smooth muscle cells and endothelial cells. Vascular smooth muscle ceils and endothelial cells contained fairly high concentrations of superoxide dismutase, but not catalase, activity. The sensitivity of these cells to hydrogen peroxide but not to superoxide may arise from the fact that these cells lack intracellular catalase activity. The injury of vascular cells, which constitute important components of blood vessels, may lead to vascular injury and subsequent tissue damage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号