首页 | 本学科首页   官方微博 | 高级检索  
     


Monte Carlo study of neutron dose equivalent during passive scattering proton therapy
Authors:Zheng Yuanshui  Newhauser Wayne  Fontenot Jonas  Taddei Phil  Mohan Radhe
Affiliation:The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. yszheng@mdanderson.org
Abstract:Stray radiation exposures are of concern for patients receiving proton radiotherapy and vary strongly with several treatment factors. The purposes of this study were to conservatively estimate neutron exposures for a contemporary passive scattering proton therapy system and to understand how they vary with treatment factors. We studied the neutron dose equivalent per therapeutic absorbed dose (H/D) as a function of treatment factors including proton energy, location in the treatment room, treatment field size, spread-out Bragg peak (SOBP) width and snout position using both Monte Carlo simulations and analytical modeling. The H/D value at the isocenter for a 250 MeV medium field size option was estimated to be 20 mSv Gy(-1). H/D values generally increased with the energy or penetration range, fell off sharply with distance from the treatment unit, decreased modestly with the aperture size, increased with the SOBP width and decreased with the snout distance from the isocenter. The H/D values from Monte Carlo simulations agreed well with experimental results from the literature. The analytical model predicted H/D values within 28% of those obtained in simulations; this value is within typical neutron measurement uncertainties.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号