首页 | 本学科首页   官方微博 | 高级检索  
     


PEG-Benzaldehyde-Hydrazone-Lipid Based PEG-Sheddable pH-Sensitive Liposomes: Abilities for Endosomal Escape and Long Circulation
Authors:Manju Kanamala  Brian D. Palmer  Hamidreza Ghandehari  William R. Wilson  Zimei Wu
Affiliation:1.School of Pharmacy,The University of Auckland,Auckland,New Zealand;2.Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences,The University of Auckland,Auckland,New Zealand;3.Departments of Pharmaceutics and Bioengineering, Utah Center for Nanomedicine,University of Utah,Salt Lake City,USA
Abstract:

Purpose

To fabricate an acid-cleavable PEG polymer for the development of PEG-cleavable pH-sensitive liposomes (CL-pPSL), and to investigate their ability for endosomal escape and long circulation.

Methods

PEG-benzaldehyde-hydrazone-cholesteryl hemisuccinate (PEGB-Hz-CHEMS) containing hydrazone and ester bonds was synthesised and used to fabricate a dual pH-sensitive CL-pPSL. Non-cleavable PEGylated pH-sensitive liposome (pPSL) was used as a reference and gemcitabine as a model drug. The cell uptake and endosomal escape were investigated in pancreatic cancer Mia PaCa-2 cells and pharmacokinetics were studied in rats.

Results

The CL-pPSL showed accelerated drug release at endosomal pH 5.0 compared to pPSL. Compared to pPSL, CL-pPSL released their fluorescent payload to cytosol more efficiently and showed a 1.4-fold increase in intracellular gemcitabine concentration and higher cytotoxicity. In rats, injection of gemcitabine loaded CL-pPSL resulted in a slightly smaller Vd (149?±?27 ml/kg; 170?±?30 ml/kg) and shorter terminal T1/2 (5.4?±?0.3 h; 5.8?±?0.6 h) (both p?>?0.05) but a significantly lower AUC (p?1/2 (8.2?±?0.5 h).

Conclusion

The PEG-detachment from the CL-pPSL enhanced endosome escape efficiency compared with pPSL, without significantly compromising their stealth abilities.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号