首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of cytochrome P450 (CYP) inducers and inhibitors on ondansetron pharmacokinetics in rats: involvement of hepatic CYP2D subfamily and 3A1/2 in ondansetron metabolism
Authors:Yang Si H  Lee Myung G
Affiliation:College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Gwanak-Gu, Seoul 151-742, South Korea.
Abstract:The types of hepatic microsomal cytochrome P450 (CYP) isozymes responsible for the in-vivo metabolism of ondansetron in rats have not been reported. In this study, ondansetron at a dose of 8 mg kg(-1) was administered intravenously to rats pretreated with various inducers of CYP isozymes, such as 3-methylcholanthrene, orphenadrine citrate, isoniazid and dexamethasone phosphate (the main inducers of CYP1A1/2, 2B1/2, 2E1 and 3A1/2 in rats, respectively), and inhibitors, such as SKF-525A (a non-specific inhibitor of CYP isozymes), sulfaphenazole, quinine hydrochloride and troleandomycin (the main inhibitors of CYP2C6, 2D subfamily and 3A1/2 in rats, respectively). In rats pretreated with quinine hydrochloride and troleandomycin, the time-averaged non-renal clearance of ondansetron was significantly slower (48.9 and 13.2% decrease, respectively) than that in control rats. In rats pretreated with dexamethasone phosphate, the time-averaged non-renal clearance was significantly faster (18.2% increase) than that in control rats. The results suggest that ondansetron is primarily metabolized via the CYP2D subfamily and 3A1/2 in rats.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号