Compartmentalization of Immune Responses during Staphylococcus aureus Cranial Bone Flap Infection |
| |
Authors: | Joseph Cheatle Amy Aldrich William E. Thorell Michael D. Boska Tammy Kielian |
| |
Affiliation: | ∗Division of Neurosurgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska;†Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska;‡Department of Radiology, University of Nebraska Medical Center, Omaha, Nebraska |
| |
Abstract: | Decompressive craniectomy is often required after head trauma, stroke, or cranial bleeding to control subsequent brain swelling and prevent death. The infection rate after cranial bone flap replacement ranges from 0.8% to 15%, with an alarming frequency caused by methicillin-resistant Staphylococcus aureus, which is problematic because of recalcitrance to antibiotic therapy. Herein we report the establishment of a novel mouse model of S. aureus cranial bone flap infection that mimics several aspects of human disease. Bacteria colonized bone flaps for up to 4 months after infection, as revealed by scanning electron microscopy and quantitative culture, demonstrating the chronicity of the model. Analysis of a human cranial bone flap with confirmed S. aureus infection by scanning electron microscopy revealed similar structural attributes as the mouse model, demonstrating that it closely parallels structural facets of human disease. Inflammatory indices were most pronounced within the subcutaneous galeal compartment compared with the underlying brain parenchyma. Specifically, neutrophil influx and chemokine expression (CXCL2 and CCL5) were markedly elevated in the galea, which demonstrated substantial edema on magnetic resonance images, whereas the underlying brain parenchyma exhibited minimal involvement. Evaluation of immune mechanisms required for bacterial containment and inflammation revealed critical roles for MyD88-dependent signaling and neutrophils. This novel mouse model of cranial bone flap infection can be used to identify key immunologic and therapeutic mechanisms relevant to persistent bone flap infection in humans.Decompressive craniectomy is performed after head trauma, stroke, or cranial bleeding, where a portion of the skull is removed to control subsequent brain swelling and prevent death. After removal, the bone flap is often cryopreserved until replacement; however, this increases the likelihood of destroying its blood supply, which substantially augments risk of infection.1 The prevalence of infection after craniotomy ranges from 0.8% to 15%, with an alarming frequency caused by methicillin-resistant Staphylococcus aureus (MRSA), a major community and nosocomial gram-positive pathogen.2 This high infection rate subjects patients to at least two additional surgical procedures since it is not possible to clear the infected bone in situ because of its recalcitrance to antibiotic therapy.3 In the first procedure, the infected skull flap is removed, and after a variable period of antibiotic therapy ranging from 6 weeks to >12 months, a second procedure is performed to place an expensive custom alloplastic flap composed of either acrylic resins, titanium mesh, or hydroxyapatite.3,4 In approximately 13% of patients, prolonged absence of the skull flap can lead to syndrome of the trephined, a series of adverse effects that can include headache, seizures, mood swings, and behavioral disturbances.5–7 Treatment of trephine syndrome consists of replacement of the original bone flap or synthetic device8,9; however, this cannot be performed until there is convincing evidence that any residual infection associated with the original bone/artificial flap has been eliminated.Currently, cranial bone flap infections cannot be prevented or effectively treated without removal of the infected flap, and little information is available about the immune or microbial attributes that contribute to disease chronicity. These are important issues because a better appreciation of key pathogenic factors may reveal new targets to prevent and/or treat bone flap infections. Here we report a novel mouse model of S. aureus cranial bone flap infection that accurately mimics several facets of human disease in response to a relatively low infectious inoculum. This model has revealed that distinct immune responses are elicited within the subcutaneous space and brain parenchyma even though both bone flap surfaces communicate with these compartments and harbor similar numbers of bacteria. This information will help to facilitate the future design of novel therapeutic targets to prevent and/or treat bacterial cranial bone flap infections. |
| |
Keywords: | |
|
|