首页 | 本学科首页   官方微博 | 高级检索  
     


Cobalt-dependent potentiation of net inward current density in Helix aspersa neurons.
Authors:Y K Kim  M L Woodruff
Affiliation:Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale 62901-4409.
Abstract:
A low concentration of transition metal ions Co2+ and Ni2+ increases the inward current density in neurons from the land snail Helix aspersa. The currents were measured using a single electrode voltage-clamp/internal perfusion method under conditions in which the external Na+ was replaced by Tris+, the predominant external current carrying cation was Ca2+, and the internal perfusate contained 120 mM Cs+/0 K+; 30 mM tetraethylammonium (TEA) was added externally to block K+ current. In the presence of Co2+ (3 mM) or Ni2+ (0.5 mM) inward Ca2+ currents were stimulated normally by voltage-dependent activation of Ca2+ channels. There was a 5-10% decrease in the rate of rise of the inward current. The principal effect of Co2+ and Ni2+ in increasing the current density seems to be a decrease in the rate at which the inward currents decline during a depolarizing voltage pulse. The results may be due to a decrease in a voltage-dependent or Ca(2+)-dependent outward current and/or an inhibition of Ca2+ channel inactivation. Outward current under these conditions (zero internal K+) was significant and most likely due to Cs+ efflux through the voltage-activated or Ca(2+)-activated nonspecific cation channels. Co2+ is an extremely effective blocker of this outward current. These results are not an artifact of internal perfusion or the special ionic conditions. Intracellular recording of unperfused neurons in normal Helix Ringer's solution showed that the Ca(2+)-dependent action potential duration was increased significantly by low concentrations of Co2+. This result is consistant with the Co(2+)-dependent increase in inward (depolarizing) current seen in voltage-clamp experiments.
Keywords:invertebrate calcium channels  nonspecific cation channels  transition metal ions  ion channel block
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号