首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation on radiofrequency and laser (980 nm) effects after endoluminal treatment of saphenous vein insufficiency in an ex-vivo model.
Authors:C-G Schmedt  R Sroka  S Steckmeier  O A Meissner  G Babaryka  K Hunger  V Ruppert  M Sadeghi-Azandaryani  B M Steckmeier
Affiliation:Clinic for Surgery, Department for Vascular Surgery and Phlebology, Ludwig-Maximilians-University Munich, Nussbaumstrasse, Munich, Germany. clausgeorg.schmedt@med.uni-muenchen.de
Abstract:OBJECTIVES: An ex-vivo model for the experimental evaluation of endoluminal thermal procedures for occlusion of saphenous veins was developed. Radiofrequency obliteration (RFO) and endovenous laser therapy (ELT) were compared using this model. DESIGN: Experimental ex-vivo treatment study. MATERIALS AND METHODS: The model consists of the subcutaneous foot veins from freshly slaughtered cows which were reperfused in situ with heparinised bovine blood. The veins were treated with either radiofrequency (RFO n=5) or with endoluminal 980 nm laser light (ELT n=5) using a continuous pull-back for RFO and a stepwise illumination and pull-back protocol for ELT. Immediately after treatment perivenous tissue and veins were examined macroscopically. In a second study the same treatment parameters were used in four further vein segments with RFO (n=2) and ELT (n=2). These vein segments were examined microscopically in HE-stained histological sections. RESULTS: Induration of the vessel wall and contraction of the vessel lumen were observed after RFO. Laser treatment produced carbonised lesions of the vein wall. After 12-24 laser exposures these lesions often became transmural, causing complete perforation of the vessel wall. Histological evaluation after radiofrequency treatment demonstrated homogenous circular thermal tissue alteration with disintegration of intima and media structures. Histological evaluation after endovenous laser treatment showed large variations of thermal tissue effects. Tissue effects ranged from major tissue ablation and vessel wall disruption to minor effects located between laser exposures and on the opposite vessel wall. CONCLUSIONS: Our model is suitable for systematic scientific evaluation of endovenous thermal occlusion procedures. Our first results and theoretical considerations indicate that endovenous laser treatment should be modified in order to ensure controlled homogenous circular thermal damage, avoiding vessel wall perforation and damage to perivascular structures.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号