Abstract: | C57BL/10 mice were injected with semiallogeneic (B10.D2 X C57BL/10)F(1) spleen cells via the anterior facial vein within 24 h of birth to induce tolerance to B10.D2 (H-2(d)) alloantigens. Spleen cells from these mice as adults developed reduced, but significant, mixed lymphocyte and cytotoxic lymphocyte responses in vitro to H-2(d) stimulator cells and these treated mice rejected first-set B10.D2 skin grafts within a normal time-course, indicating that at best only a state of partial tolerance had been induced. Spleen cells from these mice failed to develop antibody responses to a variety of antigens in vitro when H-2(d) macrophages were in the cultures. Partially purified T cells from these neonatally treated mice suppressed primary antibody responses by normal syngeneic spleen cells in the presence of H-2(d) but not other allogeneic macrophages. These radiosensitive, haplotype-specific suppressor T (Ts) cells inhibited primary antibody responses by blocking initiation of the response, but failed to suppress secondary antibody responses and mixed lymphocyte or cytotoxic lymphocyte responses by appropriate responding spleen cells. To activate H-2(d) haplotype-specific Ts cells, stimulation with IA(d) subregion antigen(s) was necessary and sufficient; syngenicity at the I-A subregion of H-2 between the activated Ts cells and target responding spleen cell populations was also necessary and sufficient to achieve suppression. Comparable results have been obtained with spleen cells from BALB/c mice injected as neonates with (B10.D2 × C57BL/10)F(1) spleen cells where IA(b) antigens activate the haplotype-specific Ts cells. Implications for the significance of this population of haplotype-specific Ts cells in immune regulation are discussed and the properties of these Ts cells are compared and contrasted with other antigen-specific and nonspecific Ts cells whose activity is restricted by I- region products. |