Blockade of beta-adrenergic signaling does not influence the bone mechano-adaptive response in mice |
| |
Authors: | Marenzana Massimo De Souza Roberto L Chenu Chantal |
| |
Affiliation: | Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London, United Kingdom. mmarenzana@rvc.ac.uk |
| |
Abstract: | ![]() The involvement of the sympathetic nervous system (SNS) in the modulation of bone adaptation to its load-bearing demand remains controversial. This study tested the involvement of SNS in the adaptive response of trabecular and cortical bone to either external loading or disuse. External loading consisted of cyclic strain (40 cycles, peak 1500 microstrain) applied for 7 min, 3 days/week, while disuse was induced by unilateral sciatic neurectomy (SN). C57Bl/J6 mice, female, 9 weeks old, were subjected to loading or disuse for 2 weeks. Half of the loaded and SN mice were injected with the beta-adrenergic antagonist, propranolol (PRO, 20 mug/g) 1 week before the start of loading or disuse and during all the duration of the experiment. MicroCT analysis of the tibiae showed that the applied load induced significant changes on both trabecular architecture and cortical geometry compared to the contralateral controls, indicating increased bone mass. In contrast, disuse markedly reduced trabecular and cortical indexes. However, these adaptive responses were not altered by PRO treatment. We further tested whether the lack of protective effect of PRO against disuse-induced bone loss was due to the very short duration of treatment by blocking SNS signaling for 8 weeks with either PRO (0.5 mg/ml in drinking water) or guanethidine sulfate (GS, 40 mug/g, injected). At the end of fourth week of treatment, mice underwent SN surgery so that disuse was induced for the remaining 4 weeks. Again, neither PRO nor GS treatments altered the disuse-induced bone loss in the neurectomized tibia. In addition, blockade of SNS signaling for either 3 or 8 weeks did not affect the basal trabecular bone architecture in control tibiae and in L4 vertebrae. This study shows that the mechano-adaptive response occurring in trabecular and cortical bone upon loading or disuse is not altered by inactivation of beta-adrenergic signaling. Furthermore, sympathectomy had no effect on trabecular bone at different skeletal sites. This suggests that the osteo-regulatory action of beta-adrenergic signaling is not involved in the bone mechano-adaptive response and must therefore affect other bone regulatory pathways. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|