首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊识别理论的针电极肌电信号的辨识
引用本文:秦川,王志中,马明辉. 基于模糊识别理论的针电极肌电信号的辨识[J]. 北京生物医学工程, 2003, 22(1): 18-20,9
作者姓名:秦川  王志中  马明辉
作者单位:上海交通大学生物医学工程系,200030
基金项目:国家自然科学基金;60171006;
摘    要:针对针电极肌电信号的不确定性,提出了一种利用模糊识别理论辨识针电极肌电信号的方法,对前臂异常募集时的针电极肌电信号进行辨识,给出了模糊识别所需的特征量,隶属度函数和特征关系矩阵。与选取相同特征值和样本数量的贝叶斯分类器的对比实验表明,这种方法所需样本少,识别准确率高。

关 键 词:肌电图 模糊识别理论 隶属度函数 针电极肌电信号 异常募集
文章编号:1002-3208(2003)01-0018-03

Identification of Needle Electrode Electromyography Signals Based on Fuzzy Recognition Method
QIN Chuan,WANG Zhizhong,MA Minghui. Identification of Needle Electrode Electromyography Signals Based on Fuzzy Recognition Method[J]. Beijing Biomedical Engineering, 2003, 22(1): 18-20,9
Authors:QIN Chuan  WANG Zhizhong  MA Minghui
Affiliation:QIN Chuan,WANG Zhizhong,MA Minghui. Department of Biomedical Engineering,Shanghai Jiaotong University,Shanghai 200030
Abstract:Focusing on the uncertainty of needle EMG, a NEMG identification method based on fuzzy recognition method is presented in this paper to identify needle electrode electromyography signal during forearm abnormal recruitment. Membership grade function, eigenvalue, and relation matrix required for fuzzy recognition are given. When the same eignvalues and number of samples are the same, compared with the method using Bayes classifier, our new method has advantages of fewer samples and higher accuracy of identification under the same conditions.
Keywords:Character extraction Fuzzy recognition Membership grade function Nod EMB(NEMG) Abnormal recruitment
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号