首页 | 本学科首页   官方微博 | 高级检索  
     


Using nomogram,decision tree,and deep learning models to predict lymph node metastasis in patients with early gastric cancer: a multi-cohort study
Authors:Lulu Zhao  Weili Han  Penghui Niu  Yuanyuan Lu  Fan Zhang  Fuzhi Jiao  Xiadong Zhou  Wanqing Wang  Xiaoyi Luan  Mingyan He  Quanlin Guan  Yumin Li  Yongzhan Nie  Kaichun Wu  Dongbing Zhao  Yingtai Chen
Abstract:
The accurate assessment of lymph node metastasis (LNM) in patients with early gastric cancer is critical to the selection of the most appropriate surgical treatment. This study aims to develop an optimal LNM prediction model using different methods, including nomogram, Decision Tree, Naive Bayes, and deep learning methods. In this study, we included two independent datasets: the gastrectomy set (n=3158) and the endoscopic submucosal dissection (ESD) set (n=323). The nomogram, Decision Tree, Naive Bayes, and fully convolutional neural networks (FCNN) models were established based on logistic regression analysis of the development set. The predictive power of the LNM prediction models was revealed by time-dependent receiver operating characteristic (ROC) curves and calibration plots. We then used the ESD set as an external cohort to evaluate the models’ performance. In the gastrectomy set, multivariate analysis showed that gender (P=0.008), year when diagnosed (2006-2010 year, P=0.265; 2011-2015 year, P=0.001; and 2016-2020 year, P<0.001, respectively), tumor size (2-4 cm, P=0.001; and ≥4 cm, P<0.001, respectively), tumor grade (poorly-moderately, P=0.016; moderately, P<0.001; well-moderately, P<0.001; and well, P<0.001, respectively), vascular invasion (P<0.001), and pT stage (P<0.001) were independent risk factors for LNM in early gastric cancer. The area under the curve (AUC) for the validation set using the nomogram, Decision Tree, Naive Bayes, and FCNN models were 0.78, 0.76, 0.77, and 0.79, respectively. In conclusion, our multi-cohort study systematically investigated different LNM prediction methods for patients with early gastric cancer. These models were validated and shown to be reliable with AUC>0.76 for all. Specifically, the FCNN model showed the most accurate prediction of LNM risks in early gastric cancer patients with AUC=0.79. Based on the FCNN model, patients with LNM rates of >4.77% are strong candidates for gastrectomy rather than ESD surgery.
Keywords:lymph node metastasis   early gastric cancer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号